These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36652920)
1. Assessment of Esophageal Reconstruction via Bioreactor Cultivation of a Synthetic Scaffold in a Canine Model. Kim IG; Wu Y; Park SA; Choi JS; Kwon SK; Choi SH; Jung KC; Shin JW; Chung EJ Clin Exp Otorhinolaryngol; 2023 May; 16(2):165-176. PubMed ID: 36652920 [TBL] [Abstract][Full Text] [Related]
2. Tissue-Engineered Esophagus via Bioreactor Cultivation for Circumferential Esophageal Reconstruction. Kim IG; Wu Y; Park SA; Cho H; Choi JJ; Kwon SK; Shin JW; Chung EJ Tissue Eng Part A; 2019 Nov; 25(21-22):1478-1492. PubMed ID: 30799779 [TBL] [Abstract][Full Text] [Related]
3. Tissue-Engineered Graft for Circumferential Esophageal Reconstruction in Rats. Kim IG; Wu Y; Park SA; Cho H; Shin JW; Chung EJ J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090989 [TBL] [Abstract][Full Text] [Related]
4. Polyurethane scaffolds seeded with autologous cells can regenerate long esophageal gaps: An esophageal atresia treatment model. Jensen T; Wanczyk H; Sharma I; Mitchell A; Sayej WN; Finck C J Pediatr Surg; 2019 Sep; 54(9):1744-1754. PubMed ID: 30429066 [TBL] [Abstract][Full Text] [Related]
5. Long-term regeneration and remodeling of the pig esophagus after circumferential resection using a retrievable synthetic scaffold carrying autologous cells. La Francesca S; Aho JM; Barron MR; Blanco EW; Soliman S; Kalenjian L; Hanson AD; Todorova E; Marsh M; Burnette K; DerSimonian H; Odze RD; Wigle DA Sci Rep; 2018 Mar; 8(1):4123. PubMed ID: 29515136 [TBL] [Abstract][Full Text] [Related]
6. First-in-Human Segmental Esophageal Reconstruction Using a Bioengineered Mesenchymal Stromal Cell-Seeded Implant. Aho JM; La Francesca S; Olson SD; Triolo F; Bouchard J; Mondano L; Sundaram S; Roffidal C; Cox CS; Wong Kee Song LM; Said SM; Fodor W; Wigle DA JTO Clin Res Rep; 2021 Sep; 2(9):100216. PubMed ID: 34590055 [TBL] [Abstract][Full Text] [Related]
7. Mechanical stimuli enhance simultaneous differentiation into oesophageal cell lineages in a double-layered tubular scaffold. Wu Y; Kang YG; Kim IG; Kim JE; Lee EJ; Chung EJ; Shin JW J Tissue Eng Regen Med; 2019 Aug; 13(8):1394-1405. PubMed ID: 31066514 [TBL] [Abstract][Full Text] [Related]
8. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. Tan B; Wei RQ; Tan MY; Luo JC; Deng L; Chen XH; Hou JL; Li XQ; Yang ZM; Xie HQ J Surg Res; 2013 Jun; 182(1):40-8. PubMed ID: 22925499 [TBL] [Abstract][Full Text] [Related]
9. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. Takeoka Y; Matsumoto K; Taniguchi D; Tsuchiya T; Machino R; Moriyama M; Oyama S; Tetsuo T; Taura Y; Takagi K; Yoshida T; Elgalad A; Matsuo N; Kunizaki M; Tobinaga S; Nonaka T; Hidaka S; Yamasaki N; Nakayama K; Nagayasu T PLoS One; 2019; 14(3):e0211339. PubMed ID: 30849123 [TBL] [Abstract][Full Text] [Related]
10. Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes. Kim IG; Park SA; Lee SH; Choi JS; Cho H; Lee SJ; Kwon YW; Kwon SK Sci Rep; 2020 Mar; 10(1):4326. PubMed ID: 32152475 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic and synthetic esophageal tissue engineering. Jensen T; Blanchette A; Vadasz S; Dave A; Canfarotta M; Sayej WN; Finck C Biomaterials; 2015 Jul; 57():133-41. PubMed ID: 25916501 [TBL] [Abstract][Full Text] [Related]
12. Esophageal tissue engineering: a new approach for esophageal replacement. Totonelli G; Maghsoudlou P; Fishman JM; Orlando G; Ansari T; Sibbons P; Birchall MA; Pierro A; Eaton S; De Coppi P World J Gastroenterol; 2012 Dec; 18(47):6900-7. PubMed ID: 23322987 [TBL] [Abstract][Full Text] [Related]
13. A multilayer scaffold design with spatial arrangement of cells to modulate esophageal tissue growth. Soliman S; Laurent J; Kalenjian L; Burnette K; Hedberg B; La Francesca S J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):324-331. PubMed ID: 29717817 [TBL] [Abstract][Full Text] [Related]
14. Successful muscle regeneration by a homologous microperforated scaffold seeded with autologous mesenchymal stromal cells in a porcine esophageal substitution model. Marzaro M; Algeri M; Tomao L; Tedesco S; Caldaro T; Balassone V; Contini AC; Guerra L; Federici D'Abriola G; Francalanci P; Caristo ME; Lupoi L; Boskoski I; Bozza A; Astori G; Pozzato G; Pozzato A; Costamagna G; Dall'Oglio L Therap Adv Gastroenterol; 2020; 13():1756284820923220. PubMed ID: 32523626 [TBL] [Abstract][Full Text] [Related]
15. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model. Park H; Kim IG; Wu Y; Cho H; Shin JW; Park SA; Chung EJ Head Neck; 2021 Mar; 43(3):833-848. PubMed ID: 33241663 [TBL] [Abstract][Full Text] [Related]
16. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study. Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665 [TBL] [Abstract][Full Text] [Related]
17. Engineered Full Thickness Electrospun Scaffold for Esophageal Tissue Regeneration: From In Vitro to In Vivo Approach. Pisani S; Croce S; Mauramati S; Marmonti M; Cobianchi L; Herman I; Dorati R; Avanzini MA; Genta I; Benazzo M; Conti B Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35213985 [TBL] [Abstract][Full Text] [Related]
18. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues. Lin S; Mequanint K Acta Biomater; 2017 Sep; 59():200-209. PubMed ID: 28690007 [TBL] [Abstract][Full Text] [Related]
19. Experimental reconstruction of cervical esophageal defect with artificial esophagus made of polyurethane in a dog model. Jiang H; Cui Y; Ma K; Gong M; Chang D; Wang T Dis Esophagus; 2016 Jan; 29(1):62-9. PubMed ID: 25074403 [TBL] [Abstract][Full Text] [Related]
20. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model. Shakhssalim N; Soleimani M; Dehghan MM; Rasouli J; Taghizadeh-Jahed M; Torbati PM; Naji M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():877-884. PubMed ID: 28415542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]