BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36653299)

  • 1. Polymer brushes for friction control: Contributions of molecular simulations.
    Abdelbar MA; Ewen JP; Dini D; Angioletti-Uberti S
    Biointerphases; 2023 Jan; 18(1):010801. PubMed ID: 36653299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface friction of hydrogels with well-defined polyelectrolyte brushes.
    Ohsedo Y; Takashina R; Gong JP; Osada Y
    Langmuir; 2004 Aug; 20(16):6549-55. PubMed ID: 15274553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction between ring polymer brushes.
    Erbaş A; Paturej J
    Soft Matter; 2015 Apr; 11(16):3139-48. PubMed ID: 25747253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable friction using contacts of stimulus-responsive and nonresponding swollen polymer brushes.
    de Beer S
    Langmuir; 2014 Jul; 30(27):8085-90. PubMed ID: 24954240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching of friction by binary polymer brushes.
    Kumar Vyas M; Schneider K; Nandan B; Stamm M
    Soft Matter; 2008 Apr; 4(5):1024-1032. PubMed ID: 32907135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.
    Kobayashi M; Terada M; Takahara A
    Faraday Discuss; 2012; 156():403-12; discussion 413-34. PubMed ID: 23285641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological properties of hydrophilic polymer brushes under wet conditions.
    Kobayashi M; Takahara A
    Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-density zwitterionic polymer brushes exhibit robust lubrication properties and high antithrombotic efficacy in blood-contacting medical devices.
    Song X; Man J; Qiu Y; Wang J; Liu J; Li R; Zhang Y; Li J; Li J; Chen Y
    Acta Biomater; 2024 Apr; 178():111-123. PubMed ID: 38423351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces.
    Sirchabesan M; Giasson S
    Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes.
    Ishraaq R; Das S
    Chem Commun (Camb); 2024 Jun; 60(48):6093-6129. PubMed ID: 38819435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Chain Rearrangement: What Happens When Polymers in Brushes Have a Charge Gradient?
    Smook LA; de Beer S
    Langmuir; 2024 Feb; 40(8):4142-4151. PubMed ID: 38355408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial friction and adhesion of polymer brushes.
    Landherr LJ; Cohen C; Agarwal P; Archer LA
    Langmuir; 2011 Aug; 27(15):9387-95. PubMed ID: 21696203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes.
    Liberelle B; Giasson S
    Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM.
    Kitano K; Inoue Y; Matsuno R; Takai M; Ishihara K
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):350-7. PubMed ID: 19720506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study.
    Singh MK; Ilg P; Espinosa-Marzal RM; Spencer ND; Kröger M
    Polymers (Basel); 2016 Jul; 8(7):. PubMed ID: 30974530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes.
    Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2011 Mar; 27(6):2514-21. PubMed ID: 21319847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.