These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 36653370)

  • 1. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination.
    Akter M; Ansary S; Khan MA; Kim D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method.
    Fan C; Gao F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals.
    Raja Sekaran S; Pang YH; You LZ; Yin OS
    PLoS One; 2024; 19(8):e0304655. PubMed ID: 39137226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices.
    Muniasamy A
    Technol Health Care; 2024 Aug; ():. PubMed ID: 39269866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matched Filter Interpretation of CNN Classifiers with Application to HAR.
    Farag MM
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.