These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer. Roper N; Velez MJ; Chiappori A; Kim YS; Wei JS; Sindiri S; Takahashi N; Mulford D; Kumar S; Ylaya K; Trindade C; Manukyan I; Brown AL; Trepel JB; Lee JM; Hewitt S; Khan J; Thomas A Nat Commun; 2021 Jun; 12(1):3880. PubMed ID: 34162872 [TBL] [Abstract][Full Text] [Related]
24. Identification of Crucial Gene Modules Related to the Efficiency of Anti-PD-1/PD-L1 Therapy and Comprehensive Analyses of a Novel Signature Based on These Modules. Wang W; Dong D; Chen L; Wang H; Bi B; Liu T Front Genet; 2022; 13():893380. PubMed ID: 35937997 [TBL] [Abstract][Full Text] [Related]
25. Factors Determining Long-Term Antitumor Responses to Immune Checkpoint Blockade Therapy in Melanoma. Loo K; Smithy JW; Postow MA; Betof Warner A Front Immunol; 2021; 12():810388. PubMed ID: 35087529 [TBL] [Abstract][Full Text] [Related]
27. A multi-omic single cell sequencing approach to develop a CD8 T cell specific gene signature for anti-PD1 response in solid tumors. Kumar N; Papillon-Cavanagh S; Tang H; Wang S; Stromko C; Ho CP; Soni-Sheth S; Vasquez-Grinnell S; Broz ML; Tenney DJ; Wichroski MJ; Walsh AM; Hu Y; Benci JL Int J Cancer; 2022 Dec; 151(11):2043-2054. PubMed ID: 35932450 [TBL] [Abstract][Full Text] [Related]
28. A novel immune signature predicts immunotherapy responsiveness and reveals the landscape of the tumor immune microenvironment in head and neck squamous cell carcinoma. Wang Q; Zhao Y; Wang F; Tan G Front Genet; 2022; 13():1051051. PubMed ID: 36437964 [No Abstract] [Full Text] [Related]
29. Identification of a cytokine-dominated immunosuppressive class in squamous cell lung carcinoma with implications for immunotherapy resistance. Yang M; Lin C; Wang Y; Chen K; Zhang H; Li W Genome Med; 2022 Jul; 14(1):72. PubMed ID: 35799269 [TBL] [Abstract][Full Text] [Related]
30. Transient activation of tumoral DNA damage tolerance pathway coupled with immune checkpoint blockade exerts durable tumor regression in mouse melanoma. Zhuo M; Gorgun FM; Tyler DS; Englander EW Pigment Cell Melanoma Res; 2021 May; 34(3):605-617. PubMed ID: 33124186 [TBL] [Abstract][Full Text] [Related]
31. Early disappearance of tumor antigen-reactive T cells from peripheral blood correlates with superior clinical outcomes in melanoma under anti-PD-1 therapy. Bochem J; Zelba H; Spreuer J; Amaral T; Wagner NB; Gaissler A; Pop OT; Thiel K; Yurttas C; Soffel D; Forchhammer S; Sinnberg T; Niessner H; Meier F; Terheyden P; Königsrainer A; Garbe C; Flatz L; Pawelec G; Eigentler TK; Löffler MW; Weide B; Wistuba-Hamprecht K J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34933966 [TBL] [Abstract][Full Text] [Related]
32. Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. Bai Y; Xie T; Wang Z; Tong S; Zhao X; Zhao F; Cai J; Wei X; Peng Z; Shen L J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35241494 [TBL] [Abstract][Full Text] [Related]
33. Cold and hot tumors: from molecular mechanisms to targeted therapy. Wu B; Zhang B; Li B; Wu H; Jiang M Signal Transduct Target Ther; 2024 Oct; 9(1):274. PubMed ID: 39420203 [TBL] [Abstract][Full Text] [Related]
34. A Predictive Network-Based Immune Checkpoint Blockade Immunotherapeutic Signature Optimizing Patient Selection and Treatment Strategies. Zhang N; Yang M; Yang JM; Zhang CY; Guo AY Small Methods; 2024 Oct; 8(10):e2301685. PubMed ID: 38546036 [TBL] [Abstract][Full Text] [Related]
35. Immune checkpoint blockade induces distinct alterations in the microenvironments of primary and metastatic brain tumors. Sun L; Kienzler JC; Reynoso JG; Lee A; Shiuan E; Li S; Kim J; Ding L; Monteleone AJ; Owens GC; Phillips JJ; Everson RG; Nathanson D; Cloughesy TF; Li G; Liau LM; Hugo W; Kim W; Prins RM J Clin Invest; 2023 Sep; 133(17):. PubMed ID: 37655659 [TBL] [Abstract][Full Text] [Related]
36. Insignificant effects of loss of heterozygosity in HLA in the efficacy of immune checkpoint blockade treatment. Yang Y; Kim E; Kim S Genes Genomics; 2022 Apr; 44(4):509-515. PubMed ID: 35107815 [TBL] [Abstract][Full Text] [Related]
38. Deactivation of ligand-receptor interactions enhancing lymphocyte infiltration drives melanoma resistance to Immune Checkpoint Blockade. Sahni S; Wang B; Wu D; Dhruba SR; Nagy M; Patkar S; Ferreira I; Wang K; Ruppin E bioRxiv; 2023 Sep; ():. PubMed ID: 37886558 [TBL] [Abstract][Full Text] [Related]
39. Upregulated Immunogenic Cell-Death-Associated Gene Signature Predicts Reduced Responsiveness to Immune-Checkpoint-Blockade Therapy and Poor Prognosis in High-Grade Gliomas. Tang X; Guo D; Yang X; Chen R; Jiang Q; Zeng Z; Li Y; Li Z Cells; 2022 Nov; 11(22):. PubMed ID: 36429083 [No Abstract] [Full Text] [Related]
40. Identification of four immune subtypes in locally advanced rectal cancer treated with neoadjuvant chemotherapy for predicting the efficacy of subsequent immune checkpoint blockade. He L; Jin M; Jian D; Yang B; Dai N; Feng Y; Xiao H; Wang D Front Immunol; 2022; 13():955187. PubMed ID: 36238279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]