BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36653528)

  • 1. Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing.
    Wu X; Liu Y; d'Aubenton-Carafa Y; Thermes C; Hyrien O; Chen CL; Petryk N
    Nat Protoc; 2023 Apr; 18(4):1260-1295. PubMed ID: 36653528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring genome-wide replication fork directionality by Okazaki fragment sequencing in mammalian cells.
    Kit Leng Lui S; Keegan S; Tonzi P; Kahli M; Chen YH; Chalhoub N; Coleman KE; Fenyo D; Smith DJ; Huang TT
    Nat Protoc; 2021 Feb; 16(2):1193-1218. PubMed ID: 33442052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OKseqHMM: a genome-wide replication fork directionality analysis toolkit.
    Liu Y; Wu X; d'Aubenton-Carafa Y; Thermes C; Chen CL
    Nucleic Acids Res; 2023 Feb; 51(4):e22. PubMed ID: 36629249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq.
    Kara N; Krueger F; Rugg-Gunn P; Houseley J
    PLoS Biol; 2021 Mar; 19(3):e3000886. PubMed ID: 33760805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination.
    McGuffee SR; Smith DJ; Whitehouse I
    Mol Cell; 2013 Apr; 50(1):123-35. PubMed ID: 23562327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FORK-seq: Single-Molecule Profiling of DNA Replication.
    Hennion M; Theulot B; Arbona JM; Audit B; Hyrien O
    Methods Mol Biol; 2022; 2477():107-128. PubMed ID: 35524115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing.
    Hennion M; Arbona JM; Lacroix L; Cruaud C; Theulot B; Tallec BL; Proux F; Wu X; Novikova E; Engelen S; Lemainque A; Audit B; Hyrien O
    Genome Biol; 2020 May; 21(1):125. PubMed ID: 32456659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic coupling of lagging-strand synthesis to chromatin assembly.
    Smith DJ; Whitehouse I
    Nature; 2012 Mar; 483(7390):434-8. PubMed ID: 22419157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.
    Wu CA; Zechner EL; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-generation sequencing of Okazaki fragments extracted from Saccharomyces cerevisiae.
    Yanga W; Lib X
    FEBS Lett; 2013 Aug; 587(15):2441-7. PubMed ID: 23792162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).
    Langley AR; Gräf S; Smith JC; Krude T
    Nucleic Acids Res; 2016 Dec; 44(21):10230-10247. PubMed ID: 27587586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in
    Giannattasio M; Branzei D
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30795600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication landscape of the human genome.
    Petryk N; Kahli M; d'Aubenton-Carafa Y; Jaszczyszyn Y; Shen Y; Silvain M; Thermes C; Chen CL; Hyrien O
    Nat Commun; 2016 Jan; 7():10208. PubMed ID: 26751768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA molecular combing-based replication fork directionality profiling.
    Blin M; Lacroix L; Petryk N; Jaszczyszyn Y; Chen CL; Hyrien O; Le Tallec B
    Nucleic Acids Res; 2021 Jul; 49(12):e69. PubMed ID: 33836085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis.
    Wu CA; Zechner EL; Reems JA; McHenry CS; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4074-83. PubMed ID: 1740453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide Nucleotide-Resolution Mapping of DNA Replication Patterns, Single-Strand Breaks, and Lesions by GLOE-Seq.
    Sriramachandran AM; Petrosino G; Méndez-Lago M; Schäfer AJ; Batista-Nascimento LS; Zilio N; Ulrich HD
    Mol Cell; 2020 Jun; 78(5):975-985.e7. PubMed ID: 32320643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA primer-primase complexes serve as the signal for polymerase recycling and Okazaki fragment initiation in T4 phage DNA replication.
    Spiering MM; Hanoian P; Gannavaram S; Benkovic SJ
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5635-5640. PubMed ID: 28507156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis.
    Hamdan SM; Loparo JJ; Takahashi M; Richardson CC; van Oijen AM
    Nature; 2009 Jan; 457(7227):336-9. PubMed ID: 19029884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global landscape of replicative DNA polymerase usage in the human genome.
    Koyanagi E; Kakimoto Y; Minamisawa T; Yoshifuji F; Natsume T; Higashitani A; Ogi T; Carr AM; Kanemaki MT; Daigaku Y
    Nat Commun; 2022 Nov; 13(1):7221. PubMed ID: 36434012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo.
    Kahli M; Osmundson JS; Yeung R; Smith DJ
    Nucleic Acids Res; 2019 Feb; 47(4):1814-1822. PubMed ID: 30541106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.