These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36653709)

  • 21. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.
    Nassour M; Idoux-Gillet Y; Selmi A; Côme C; Faraldo ML; Deugnier MA; Savagner P
    PLoS One; 2012; 7(12):e53498. PubMed ID: 23300933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of transcription factor AP-2gamma/TFAP2C impairs branching morphogenesis of the murine mammary gland.
    Jäger R; Schäfer S; Hau-Liersch M; Schorle H
    Dev Dyn; 2010 Mar; 239(3):1027-33. PubMed ID: 20131354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prep1 (pKnox1) transcription factor contributes to pubertal mammary gland branching morphogenesis.
    Sicouri L; Pisati F; Pece S; Blasi F; Longobardi E
    Int J Dev Biol; 2018; 62(11-12):827-836. PubMed ID: 30604852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The EGF repeat and discoidin domain protein, SED1/MFG-E8, is required for mammary gland branching morphogenesis.
    Ensslin MA; Shur BD
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2715-20. PubMed ID: 17299048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary gland ductal morphogenesis.
    Soriano JV; Pepper MS; Orci L; Montesano R
    J Mammary Gland Biol Neoplasia; 1998 Apr; 3(2):133-50. PubMed ID: 10819523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Un(MaSC)ing Stem Cell Dynamics in Mammary Branching Morphogenesis.
    Greenwood E; Wrenn ED; Cheung KJ
    Dev Cell; 2017 Feb; 40(4):328-330. PubMed ID: 28245919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ identification of bipotent stem cells in the mammary gland.
    Rios AC; Fu NY; Lindeman GJ; Visvader JE
    Nature; 2014 Feb; 506(7488):322-7. PubMed ID: 24463516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luminal progenitors restrict their lineage potential during mammary gland development.
    Rodilla V; Dasti A; Huyghe M; Lafkas D; Laurent C; Reyal F; Fre S
    PLoS Biol; 2015 Feb; 13(2):e1002069. PubMed ID: 25688859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.
    Lilja AM; Rodilla V; Huyghe M; Hannezo E; Landragin C; Renaud O; Leroy O; Rulands S; Simons BD; Fre S
    Nat Cell Biol; 2018 Jun; 20(6):677-687. PubMed ID: 29784917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis.
    Crowley MR; Head KL; Kwiatkowski DJ; Asch HL; Asch BB
    Dev Biol; 2000 Sep; 225(2):407-23. PubMed ID: 10985859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects.
    Ingman WV; Robertson SA
    Biol Reprod; 2008 Oct; 79(4):711-7. PubMed ID: 18614704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Intravital Microscopy Toolbox to Study Mammary Gland Dynamics from Cellular Level to Organ Scale.
    Messal HA; van Rheenen J; Scheele CLGJ
    J Mammary Gland Biol Neoplasia; 2021 Mar; 26(1):9-27. PubMed ID: 33945058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression and functional role of sprouty-2 in breast morphogenesis.
    Sigurdsson V; Ingthorsson S; Hilmarsdottir B; Gustafsdottir SM; Franzdottir SR; Arason AJ; Steingrimsson E; Magnusson MK; Gudjonsson T
    PLoS One; 2013; 8(4):e60798. PubMed ID: 23573284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early lineage segregation of multipotent embryonic mammary gland progenitors.
    Wuidart A; Sifrim A; Fioramonti M; Matsumura S; Brisebarre A; Brown D; Centonze A; Dannau A; Dubois C; Van Keymeulen A; Voet T; Blanpain C
    Nat Cell Biol; 2018 Jun; 20(6):666-676. PubMed ID: 29784918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mammary gland development.
    Macias H; Hinck L
    Wiley Interdiscip Rev Dev Biol; 2012; 1(4):533-57. PubMed ID: 22844349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth.
    Van Nguyen A; Pollard JW
    Dev Biol; 2002 Jul; 247(1):11-25. PubMed ID: 12074549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitamin D(3) receptor ablation alters mammary gland morphogenesis.
    Zinser G; Packman K; Welsh J
    Development; 2002 Jul; 129(13):3067-76. PubMed ID: 12070083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis.
    Lilla JN; Werb Z
    Dev Biol; 2010 Jan; 337(1):124-33. PubMed ID: 19850030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multidimensional Fluorescence Imaging of Embryonic and Postnatal Mammary Gland Development.
    Carabaña C; Lloyd-Lewis B
    Methods Mol Biol; 2022; 2471():19-48. PubMed ID: 35175590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration.
    Bray K; Gillette M; Young J; Loughran E; Hwang M; Sears JC; Vargo-Gogola T
    Breast Cancer Res; 2013; 15(5):R91. PubMed ID: 24074261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.