These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36654390)

  • 21. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles.
    Chen C; Förster MW; Foley SF; Shcheka SS
    Nature; 2023 Aug; 620(7974):576-581. PubMed ID: 37558874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO
    Rae JWB; Burke A; Robinson LF; Adkins JF; Chen T; Cole C; Greenop R; Li T; Littley EFM; Nita DC; Stewart JA; Taylor BJ
    Nature; 2018 Oct; 562(7728):569-573. PubMed ID: 30356182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents.
    Hu SK; Herrera EL; Smith AR; Pachiadaki MG; Edgcomb VP; Sylva SP; Chan EW; Seewald JS; German CR; Huber JA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep ploughing increases agricultural soil organic matter stocks.
    Alcántara V; Don A; Well R; Nieder R
    Glob Chang Biol; 2016 Aug; 22(8):2939-56. PubMed ID: 26994321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncovering the Neoproterozoic carbon cycle.
    Johnston DT; Macdonald FA; Gill BC; Hoffman PF; Schrag DP
    Nature; 2012 Feb; 483(7389):320-3. PubMed ID: 22388817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hidden cycle of dissolved organic carbon in the deep ocean.
    Follett CL; Repeta DJ; Rothman DH; Xu L; Santinelli C
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):16706-11. PubMed ID: 25385632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait).
    Quero GM; Celussi M; Relitti F; Kovačević V; Del Negro P; Luna GM
    Microb Ecol; 2020 May; 79(4):823-839. PubMed ID: 31728602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-photosynthetic chemoautotrophic CO
    Xu C; Feng Y; Li H; Jiang S; Ma R; Yao Y; Liu M; Yang Y; Xue Z
    Sci Total Environ; 2023 Mar; 862():160805. PubMed ID: 36502982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constraints on microbial communities, decomposition and methane production in deep peat deposits.
    Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW
    PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled deep-mantle carbon-water cycle: Evidence from lower-mantle diamonds.
    Wang W; Tschauner O; Huang S; Wu Z; Meng Y; Bechtel H; Mao HK
    Innovation (Camb); 2021 May; 2(2):100117. PubMed ID: 34557764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soil carbon content prediction using multi-source data feature fusion of deep learning based on spectral and hyperspectral images.
    Li X; Li Z; Qiu H; Chen G; Fan P
    Chemosphere; 2023 Sep; 336():139161. PubMed ID: 37302502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The origin, source, and cycling of methane in deep crystalline rock biosphere.
    Kietäväinen R; Purkamo L
    Front Microbiol; 2015; 6():725. PubMed ID: 26236303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid model of the CO2 geochemical cycle and its application to large impact events.
    Kasting JF; Richardson SM; Pollack JB; Toon OB
    Am J Sci; 1986 May; 286(5):361-89. PubMed ID: 11542044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon dioxide release from the North Pacific abyss during the last deglaciation.
    Galbraith ED; Jaccard SL; Pedersen TF; Sigman DM; Haug GH; Cook M; Southon JR; Francois R
    Nature; 2007 Oct; 449(7164):890-3. PubMed ID: 17943127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid analysis of CO
    Probst AJ; Elling FJ; Castelle CJ; Zhu Q; Elvert M; Birarda G; Holman HN; Lane KR; Ladd B; Ryan MC; Woyke T; Hinrichs KU; Banfield JF
    ISME J; 2020 Jun; 14(6):1547-1560. PubMed ID: 32203118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in North Atlantic deep-water oxygenation across the Middle Pleistocene Transition.
    Thomas NC; Bradbury HJ; Hodell DA
    Science; 2022 Aug; 377(6606):654-659. PubMed ID: 35926027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier.
    Liu J; Lin JF; Prakapenka VB
    Sci Rep; 2015 Jan; 5():7640. PubMed ID: 25560542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake.
    Ayala-Muñoz D; Macalady JL; Sánchez-España J; Falagán C; Couradeau E; Burgos WD
    ISME J; 2022 Dec; 16(12):2666-2679. PubMed ID: 36123522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.
    Smith KL; Ruhl HA; Kahru M; Huffard CL; Sherman AD
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19838-41. PubMed ID: 24218565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of structural recalcitrance to the formation of the deep oceanic dissolved organic carbon reservoir.
    Wang N; Luo YW; Polimene L; Zhang R; Zheng Q; Cai R; Jiao N
    Environ Microbiol Rep; 2018 Dec; 10(6):711-717. PubMed ID: 30277319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.