These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3665448)

  • 1. On the solution of equations for feel-better hemodialysis.
    Lee CJ; Chang YL
    Comput Biol Med; 1987; 17(3):161-72. PubMed ID: 3665448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DiaKin: an integrated program package for hemodialysis kinetics.
    Buur T
    Comput Methods Programs Biomed; 1990; 31(3-4):243-54. PubMed ID: 2364690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A digital computer model for optimal programming of hemodialytic treatment.
    Lamberti C; Sarti E; Santoro A; Spongano M; Zucchelli P; Rossi M
    Int J Artif Organs; 1988 Jul; 11(4):235-42. PubMed ID: 3410564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute solver 'what if' module for modeling urea kinetics.
    Daugirdas JT
    Nephrol Dial Transplant; 2016 Nov; 31(11):1934-1937. PubMed ID: 27587603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An advanced, user-friendly microcomputer program for hemodialysis kinetics.
    Buur T
    Adv Exp Med Biol; 1987; 223():239-44. PubMed ID: 3447440
    [No Abstract]   [Full Text] [Related]  

  • 6. A mathematical model comparing solute kinetics in low- and high-BMI hemodialysis patients.
    Cronin-Fine D; Gotch F; Levin NW; Kotanko P; Lysaght M
    Int J Artif Organs; 2007 Nov; 30(11):1000-7. PubMed ID: 18067102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of solute kinetics and body fluid changes during profiled hemodialysis.
    Ursino M; Colì L; Brighenti C; De Pascalis A; Chiari L; Dalmastri V; La Manna G; Mosconi G; Avanzolini G; Stefoni S
    Int J Artif Organs; 1999 Feb; 22(2):94-107. PubMed ID: 10212044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical analysis of a two-compartment model of urea kinetics.
    Smye SW; Will EJ
    Phys Med Biol; 1995 Dec; 40(12):2005-14. PubMed ID: 8719941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.
    Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C
    Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy.
    Marshall MR; Golper TA; Shaver MJ; Alam MG; Chatoth DK
    Am J Kidney Dis; 2002 Mar; 39(3):556-70. PubMed ID: 11877575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and control for automated regulation of hemodynamic variables during hemodialysis.
    Javed F; Savkin AV; Chan GS; Mackie JD; Lovell NH
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1686-97. PubMed ID: 21296702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Microcomputer programs for the dialysis unit--possible data collection and statistical calculations].
    Filutowicz J; Pruszczyński W
    Pol Tyg Lek; 1994 Feb 7-14; 49(6-7):170-2. PubMed ID: 8090676
    [No Abstract]   [Full Text] [Related]  

  • 13. A new algorithm for individual dialysis prescription based on urea kinetics.
    Graf H; Irschik H; Kovarik J; Stummvoll HK
    Med Prog Technol; 1986; 11(4):191-6. PubMed ID: 3807816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute disequilibrium and multicompartment modeling.
    Kaufman AM; Schneditz D; Smye S; Polaschegg HD; Levin NW
    Adv Ren Replace Ther; 1995 Oct; 2(4):319-29. PubMed ID: 8591123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imprecision of the hemodialysis dose when measured directly from urea removal. Hemodialysis Study Group.
    Depner TA; Greene T; Gotch FA; Daugirdas JT; Keshaviah PR; Star RA
    Kidney Int; 1999 Feb; 55(2):635-47. PubMed ID: 9987088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying hemodialysis.
    Depner TA
    Am J Nephrol; 1996; 16(1):17-28. PubMed ID: 8719762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of urea nitrogen and creatinine kinetics in hemodialysis: comparison of a variable-volume two-compartment model with a regional blood flow model and investigation of an appropriate solute kinetics model for clinical application.
    Yamada T; Hiraga S; Akiba T; Marumo F
    Blood Purif; 2000; 18(1):18-29. PubMed ID: 10686439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downloadable computer models for renal replacement therapy.
    Walther JL; Bartlett DW; Chew W; Robertson CR; Hostetter TH; Meyer TW
    Kidney Int; 2006 Mar; 69(6):1056-63. PubMed ID: 16528255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence: a new approach for prescription and monitoring of hemodialysis therapy.
    Akl AI; Sobh MA; Enab YM; Tattersall J
    Am J Kidney Dis; 2001 Dec; 38(6):1277-83. PubMed ID: 11728961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of continuous arterio-venous hemodiafiltration (CAVHD).
    Akcahuseyin E; Vincent HH; van Ittersum FJ; van Duyl WA; Schalekamp MA
    Comput Methods Programs Biomed; 1990; 31(3-4):215-24. PubMed ID: 2364687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.