These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36654937)

  • 1. Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers.
    Blum C; Weichhold J; Hochleitner G; Stepanenko V; Würthner F; Groll J; Jungst T
    3D Print Addit Manuf; 2021 Oct; 8(5):315-321. PubMed ID: 36654937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting.
    Böhm C; Stahlhut P; Weichhold J; Hrynevich A; Teßmar J; Dalton PD
    Small; 2022 Jan; 18(3):e2104193. PubMed ID: 34741411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Decade of Melt Electrowriting.
    O'Neill KL; Dalton PD
    Small Methods; 2023 Jul; 7(7):e2201589. PubMed ID: 37254234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
    Turner PR; Yoshida M; Ali MA; Cabral JD
    Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739
    [No Abstract]   [Full Text] [Related]  

  • 8. Dimension-Based Design of Melt Electrowritten Scaffolds.
    Hrynevich A; Elçi BŞ; Haigh JN; McMaster R; Youssef A; Blum C; Blunk T; Hochleitner G; Groll J; Dalton PD
    Small; 2018 May; 14(22):e1800232. PubMed ID: 29707891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing.
    Xie Y; Fang Q; Zhao H; Li Y; Lin Z; Chen J
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth.
    Hrynevich A; Achenbach P; Jungst T; Brook GA; Dalton PD
    Macromol Biosci; 2021 Jul; 21(7):e2000439. PubMed ID: 33951291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites.
    de Ruijter M; Hrynevich A; Haigh JN; Hochleitner G; Castilho M; Groll J; Malda J; Dalton PD
    Small; 2018 Feb; 14(8):. PubMed ID: 29239103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of a bi-layered tissue engineered conjunctiva using a 3D-printed melt electrowritten poly-(ε-caprolactone) scaffold.
    Xie J; Gao Q; Del Prado ZN; Venkateswaran N; Mousa HM; Salero E; Ye J; De Juan-Pardo EM; Sabater AL; Perez VL
    Int Ophthalmol; 2023 Jan; 43(1):215-232. PubMed ID: 35932420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds.
    Saidy NT; Shabab T; Bas O; Rojas-González DM; Menne M; Henry T; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Front Bioeng Biotechnol; 2020; 8():793. PubMed ID: 32850700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process?
    Bartolf-Kopp M; Jungst T
    Adv Healthc Mater; 2024 Apr; ():e2400426. PubMed ID: 38607966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds.
    Abbasi N; Abdal-Hay A; Hamlet S; Graham E; Ivanovski S
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3448-3461. PubMed ID: 33405729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior.
    Yoshida M; Turner PR; Ali MA; Cabral JD
    ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of Machine Vision and Melt Electrowriting.
    Mieszczanek P; Robinson TM; Dalton PD; Hutmacher DW
    Adv Mater; 2021 Jul; 33(29):e2100519. PubMed ID: 34101929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melt Electrowritten In Vitro Radial Device to Study Cell Growth and Migration.
    Bakirci E; Schaefer N; Dahri O; Hrynevich A; Strissel P; Strick R; Dalton PD; Villmann C
    Adv Biosyst; 2020 Oct; 4(10):e2000077. PubMed ID: 32875734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melt Electrospinning of Nanofibers from Medical-Grade Poly(ε-Caprolactone) with a Modified Nozzle.
    Großhaus C; Bakirci E; Berthel M; Hrynevich A; Kade JC; Hochleitner G; Groll J; Dalton PD
    Small; 2020 Nov; 16(44):e2003471. PubMed ID: 33048431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.