These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36655060)

  • 1. Hydroxyethyl Cellulose As a Rheological Additive for Tuning the Extrusion Printability and Scaffold Properties.
    Li X; Deng Q; Wang S; Li Q; Zhao W; Lin B; Luo Y; Zhang X
    3D Print Addit Manuf; 2021 Apr; 8(2):87-98. PubMed ID: 36655060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printability and Shape Fidelity of Bioinks in 3D Bioprinting.
    Schwab A; Levato R; D'Este M; Piluso S; Eglin D; Malda J
    Chem Rev; 2020 Oct; 120(19):11028-11055. PubMed ID: 32856892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting.
    Alarçin E; İzbudak B; Yüce Erarslan E; Domingo S; Tutar R; Titi K; Kocaaga B; Guner FS; Bal-Öztürk A
    J Biomed Mater Res A; 2023 Feb; 111(2):209-223. PubMed ID: 36213938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting.
    Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS
    Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH.
    Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ
    Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks.
    Lee SC; Gillispie G; Prim P; Lee SJ
    Chem Rev; 2020 Oct; 120(19):10834-10886. PubMed ID: 32815369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
    Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK
    Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Polysaccharide Hydrocolloid for the Development of Bioink with High Printability/Biocompatibility for Coextrusion 3D Bioprinting.
    Lim W; Shin SY; Cha JM; Bae H
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing bioink shape fidelity to aid material development in 3D bioprinting.
    Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J
    Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.