These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36655786)

  • 41. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding.
    Incarnato D; Morandi E; Anselmi F; Simon LM; Basile G; Oliviero S
    Nucleic Acids Res; 2017 Sep; 45(16):9716-9725. PubMed ID: 28934475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The computer simulation of RNA folding pathways using a genetic algorithm.
    Gultyaev AP; van Batenburg FH; Pleij CW
    J Mol Biol; 1995 Jun; 250(1):37-51. PubMed ID: 7541471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computing the partition function for kinetically trapped RNA secondary structures.
    Lorenz WA; Clote P
    PLoS One; 2011 Jan; 6(1):e16178. PubMed ID: 21297972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in RNA folding.
    Fallmann J; Will S; Engelhardt J; Grüning B; Backofen R; Stadler PF
    J Biotechnol; 2017 Nov; 261():97-104. PubMed ID: 28690134
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix.
    Havgaard JH; Torarinsson E; Gorodkin J
    PLoS Comput Biol; 2007 Oct; 3(10):1896-908. PubMed ID: 17937495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary solution for the RNA design problem.
    Esmaili-Taheri A; Ganjtabesh M; Mohammad-Noori M
    Bioinformatics; 2014 May; 30(9):1250-8. PubMed ID: 24407223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of pausing on the cotranscriptional folding kinetics of RNAs.
    Wang K; He Y; Shen Y; Wang Y; Xu X; Song X; Sun T
    Int J Biol Macromol; 2022 Nov; 221():1345-1355. PubMed ID: 36115451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Base-pair ambiguity and the kinetics of RNA folding.
    Zhou G; Loper J; Geman S
    BMC Bioinformatics; 2019 Dec; 20(1):666. PubMed ID: 31830902
    [TBL] [Abstract][Full Text] [Related]  

  • 49. INFO-RNA--a fast approach to inverse RNA folding.
    Busch A; Backofen R
    Bioinformatics; 2006 Aug; 22(15):1823-31. PubMed ID: 16709587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abstract folding space analysis based on helices.
    Huang J; Backofen R; Voß B
    RNA; 2012 Dec; 18(12):2135-47. PubMed ID: 23104999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rtools: a web server for various secondary structural analyses on single RNA sequences.
    Hamada M; Ono Y; Kiryu H; Sato K; Kato Y; Fukunaga T; Mori R; Asai K
    Nucleic Acids Res; 2016 Jul; 44(W1):W302-7. PubMed ID: 27131356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA folding kinetics using Monte Carlo and Gillespie algorithms.
    Clote P; Bayegan AH
    J Math Biol; 2018 Apr; 76(5):1195-1227. PubMed ID: 28780735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the importance of cotranscriptional RNA structure formation.
    Lai D; Proctor JR; Meyer IM
    RNA; 2013 Nov; 19(11):1461-73. PubMed ID: 24131802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Finding stable local optimal RNA secondary structures.
    Li Y; Zhang S
    Bioinformatics; 2011 Nov; 27(21):2994-3001. PubMed ID: 21903624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting Cotranscriptional Folding Kinetics For Riboswitch.
    Sun TT; Zhao C; Chen SJ
    J Phys Chem B; 2018 Aug; 122(30):7484-7496. PubMed ID: 29985608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FoldNucleus: web server for the prediction of RNA and protein folding nuclei from their 3D structures.
    Pereyaslavets LB; Sokolovsky IV; Galzitskaya OV
    Bioinformatics; 2015 Oct; 31(20):3374-6. PubMed ID: 26104744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA design via structure-aware multifrontier ensemble optimization.
    Zhou T; Dai N; Li S; Ward M; Mathews DH; Huang L
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i563-i571. PubMed ID: 37387188
    [TBL] [Abstract][Full Text] [Related]  

  • 59. aRNAque: an evolutionary algorithm for inverse pseudoknotted RNA folding inspired by Lévy flights.
    Merleau NSC; Smerlak M
    BMC Bioinformatics; 2022 Aug; 23(1):335. PubMed ID: 35964008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ERD: a fast and reliable tool for RNA design including constraints.
    Esmaili-Taheri A; Ganjtabesh M
    BMC Bioinformatics; 2015 Jan; 16():20. PubMed ID: 25626878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.