These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36655793)

  • 1. Prediction of drug side effects with transductive matrix co-completion.
    Liang X; Fu Y; Qu L; Zhang P; Chen Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects.
    Liang X; Li J; Fu Y; Qu L; Tan Y; Zhang P
    J Biomed Inform; 2022 Aug; 132():104131. PubMed ID: 35840061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug repositioning based on bounded nuclear norm regularization.
    Yang M; Luo H; Li Y; Wang J
    Bioinformatics; 2019 Jul; 35(14):i455-i463. PubMed ID: 31510658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization.
    Mongia A; Majumdar A
    PLoS One; 2020; 15(1):e0226484. PubMed ID: 31945078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neighborhood-regularization method leveraging multiview data for predicting the frequency of drug-side effects.
    Wang L; Sun C; Xu X; Li J; Zhang W
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37647657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug-drug interactions.
    Nguyen DA; Nguyen CH; Petschner P; Mamitsuka H
    Bioinformatics; 2022 Jun; 38(Suppl 1):i333-i341. PubMed ID: 35758803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting serious rare adverse reactions of novel chemicals.
    Poleksic A; Xie L
    Bioinformatics; 2018 Aug; 34(16):2835-2842. PubMed ID: 29617731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Drug-Target Interactions Based on Network Representation Learning and Ensemble Learning.
    Xuan P; Chen B; Zhang T; Yang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2671-2681. PubMed ID: 32340959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network.
    Hu B; Wang H; Yu Z
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug repositioning through integration of prior knowledge and projections of drugs and diseases.
    Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T
    Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction.
    Yao J; Sun W; Jian Z; Wu Q; Wang X
    Bioinformatics; 2022 Apr; 38(8):2315-2322. PubMed ID: 35176135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information.
    Li Y; Sun C; Wei JM; Liu J
    Bioinformatics; 2022 Nov; 38(22):5073-5080. PubMed ID: 36111859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph Regularized Probabilistic Matrix Factorization for Drug-Drug Interactions Prediction.
    Jain S; Chouzenoux E; Kumar K; Majumdar A
    IEEE J Biomed Health Inform; 2023 May; 27(5):2565-2574. PubMed ID: 37027562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.
    Zhang W; Chen Y; Liu F; Luo F; Tian G; Li X
    BMC Bioinformatics; 2017 Jan; 18(1):18. PubMed ID: 28056782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MSDRP: a deep learning model based on multisource data for predicting drug response.
    Zhao H; Zhang X; Zhao Q; Li Y; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molormer: a lightweight self-attention-based method focused on spatial structure of molecular graph for drug-drug interactions prediction.
    Zhang X; Wang G; Meng X; Wang S; Zhang Y; Rodriguez-Paton A; Wang J; Wang X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.