These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases. Li X; Li H; Li XJ Brain Res Rev; 2008 Nov; 59(1):245-52. PubMed ID: 18773920 [TBL] [Abstract][Full Text] [Related]
7. Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance. Yung C; Sha D; Li L; Chin LS Mol Neurobiol; 2016 Nov; 53(9):6270-6287. PubMed ID: 26563499 [TBL] [Abstract][Full Text] [Related]
8. The disturbance of protein synthesis/degradation homeostasis is a common trait of age-related neurodegenerative disorders. Di Domenico F; Lanzillotta C Adv Protein Chem Struct Biol; 2022; 132():49-87. PubMed ID: 36088079 [TBL] [Abstract][Full Text] [Related]
9. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. Tydlacka S; Wang CE; Wang X; Li S; Li XJ J Neurosci; 2008 Dec; 28(49):13285-95. PubMed ID: 19052220 [TBL] [Abstract][Full Text] [Related]
10. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Ciechanover A; Kwon YT Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616 [TBL] [Abstract][Full Text] [Related]
12. A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Crippa V; Carra S; Rusmini P; Sau D; Bolzoni E; Bendotti C; De Biasi S; Poletti A Autophagy; 2010 Oct; 6(7):958-60. PubMed ID: 20699640 [TBL] [Abstract][Full Text] [Related]
13. Spatial sequestration of misfolded proteins in neurodegenerative diseases. Rolli S; Sontag EM Biochem Soc Trans; 2022 Apr; 50(2):759-771. PubMed ID: 35311889 [TBL] [Abstract][Full Text] [Related]
14. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes. Ayyadevara S; Balasubramaniam M; Gao Y; Yu LR; Alla R; Shmookler Reis R Aging Cell; 2015 Feb; 14(1):35-48. PubMed ID: 25510159 [TBL] [Abstract][Full Text] [Related]
15. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. Zheng C; Geetha T; Babu JR Neurodegener Dis; 2014; 14(4):161-75. PubMed ID: 25413678 [TBL] [Abstract][Full Text] [Related]
16. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Schmidt MF; Gan ZY; Komander D; Dewson G Cell Death Differ; 2021 Feb; 28(2):570-590. PubMed ID: 33414510 [TBL] [Abstract][Full Text] [Related]
17. The ubiquitin-proteasome system in neurodegeneration. McKinnon C; Tabrizi SJ Antioxid Redox Signal; 2014 Dec; 21(17):2302-21. PubMed ID: 24437518 [TBL] [Abstract][Full Text] [Related]
18. Autophagy and polyglutamine diseases. Jimenez-Sanchez M; Thomson F; Zavodszky E; Rubinsztein DC Prog Neurobiol; 2012 May; 97(2):67-82. PubMed ID: 21930185 [TBL] [Abstract][Full Text] [Related]
19. alpha-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis. Zhang NY; Tang Z; Liu CW J Biol Chem; 2008 Jul; 283(29):20288-98. PubMed ID: 18502751 [TBL] [Abstract][Full Text] [Related]
20. Inefficient degradation of truncated polyglutamine proteins by the proteasome. Holmberg CI; Staniszewski KE; Mensah KN; Matouschek A; Morimoto RI EMBO J; 2004 Oct; 23(21):4307-18. PubMed ID: 15470501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]