These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36656714)

  • 1. The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement.
    Contreras-López R; Alatriste-León H; Díaz-Hernández E; Ramírez-Jarquín JO; Tecuapetla F
    Cell Rep; 2023 Jan; 42(1):112000. PubMed ID: 36656714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus.
    Low AYT; Thanawalla AR; Yip AKK; Kim J; Wong KLL; Tantra M; Augustine GJ; Chen AI
    Cell Rep; 2018 Feb; 22(9):2322-2333. PubMed ID: 29490269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Heterogeneity of Cerebellar Interposed Nucleus-Recipient Zones in the Thalamic Nuclei.
    Ma KY; Cai XY; Wang XT; Wang ZX; Huang WM; Wu ZY; Feng ZY; Shen Y
    Neurosci Bull; 2021 Nov; 37(11):1529-1541. PubMed ID: 34609736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating Cerebellar Impact on Thalamic Nuclei.
    Gornati SV; Schäfer CB; Eelkman Rooda OHJ; Nigg AL; De Zeeuw CI; Hoebeek FE
    Cell Rep; 2018 May; 23(9):2690-2704. PubMed ID: 29847799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalamic connectivity of rat somatic motor cortex.
    Aldes LD
    Brain Res Bull; 1988 Mar; 20(3):333-48. PubMed ID: 2452673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of striatal cells and goal-directed behavior by cerebellar outputs.
    Xiao L; Bornmann C; Hatstatt-Burklé L; Scheiffele P
    Nat Commun; 2018 Aug; 9(1):3133. PubMed ID: 30087345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement.
    Milak MS; Shimansky Y; Bracha V; Bloedel JR
    J Neurophysiol; 1997 Aug; 78(2):939-59. PubMed ID: 9307126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cerebellar Nuclei and Dexterous Limb Movements.
    Thanawalla AR; Chen AI; Azim E
    Neuroscience; 2020 Dec; 450():168-183. PubMed ID: 32652173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Projection From the Deep Cerebellar Nuclei to the Hippocampus
    Bohne P; Schwarz MK; Herlitze S; Mark MD
    Front Neural Circuits; 2019; 13():51. PubMed ID: 31447652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice.
    Zhang J; Chen H; Zhang LB; Li RR; Wang B; Zhang QH; Tong LX; Zhang WW; Yao ZX; Hu B
    Neurosci Bull; 2022 May; 38(5):459-473. PubMed ID: 34989972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascending parabrachio-thalamo-striatal pathways: potential circuits for integration of gustatory and oral motor functions.
    Iwai H; Kuramoto E; Yamanaka A; Sonomura T; Uemura M; Goto T
    Neuroscience; 2015 May; 294():1-13. PubMed ID: 25743252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat.
    Anderson ME; DeVito JL
    Exp Brain Res; 1987; 68(2):260-76. PubMed ID: 3691701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Thalamostriatal Projections Contribute to the Initiation and Execution of a Sequence of Movements.
    Díaz-Hernández E; Contreras-López R; Sánchez-Fuentes A; Rodríguez-Sibrían L; Ramírez-Jarquín JO; Tecuapetla F
    Neuron; 2018 Nov; 100(3):739-752.e5. PubMed ID: 30344045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Striatal bilateral control of skilled forelimb movement.
    Lopez-Huerta VG; Denton JA; Nakano Y; Jaidar O; Garcia-Munoz M; Arbuthnott GW
    Cell Rep; 2021 Jan; 34(3):108651. PubMed ID: 33472081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific relationship between excitatory inputs and climbing fiber receptive fields in deep cerebellar nuclear neurons.
    Bengtsson F; Jörntell H
    PLoS One; 2014; 9(1):e84616. PubMed ID: 24416251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning.
    Hirono M; Watanabe S; Karube F; Fujiyama F; Kawahara S; Nagao S; Yanagawa Y; Misonou H
    J Neurosci; 2018 Jul; 38(27):6130-6144. PubMed ID: 29858484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectivity patterns of thalamic nuclei implicated in dyskinesia.
    Carpenter MB
    Stereotact Funct Neurosurg; 1989; 52(2-4):79-119. PubMed ID: 2657951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the cerebello-thalamo-cortical pathway in skilled movement.
    Horne MK; Butler EG
    Prog Neurobiol; 1995 Jun; 46(2-3):199-213. PubMed ID: 7568913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological evidence for a vestibulo-thalamo-striatal pathway via the parafascicular nucleus in the rat.
    Lai H; Tsumori T; Shiroyama T; Yokota S; Nakano K; Yasui Y
    Brain Res; 2000 Jul; 872(1-2):208-14. PubMed ID: 10924695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor skills mediated through cerebellothalamic tracts projecting to the central lateral nucleus.
    Sakayori N; Kato S; Sugawara M; Setogawa S; Fukushima H; Ishikawa R; Kida S; Kobayashi K
    Mol Brain; 2019 Feb; 12(1):13. PubMed ID: 30736823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.