These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 36656852)

  • 21. BCL::Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements.
    Karakaş M; Woetzel N; Staritzbichler R; Alexander N; Weiner BE; Meiler J
    PLoS One; 2012; 7(11):e49240. PubMed ID: 23173050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo replica-exchange based ensemble docking of protein conformations.
    Zhang Z; Ehmann U; Zacharias M
    Proteins; 2017 May; 85(5):924-937. PubMed ID: 28168752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing physical energy functions for protein folding.
    Fujitsuka Y; Takada S; Luthey-Schulten ZA; Wolynes PG
    Proteins; 2004 Jan; 54(1):88-103. PubMed ID: 14705026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The native sequence determines sidechain packing in a protein, but does optimal sidechain packing determine the native sequence?
    Koehl P; Delarue M
    Pac Symp Biocomput; 1997; ():198-209. PubMed ID: 9390292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    Taly JF; Marin A; Gibrat JF
    BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coarse-Grained Modeling of the Interplay between Secondary Structure Propensities and Protein Fold Assembly.
    Dawid AE; Gront D; Kolinski A
    J Chem Theory Comput; 2018 Apr; 14(4):2277-2287. PubMed ID: 29486120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing protein fold space with a simplified model.
    Minary P; Levitt M
    J Mol Biol; 2008 Jan; 375(4):920-33. PubMed ID: 18054792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragment-free approach to protein folding using conditional neural fields.
    Zhao F; Peng J; Xu J
    Bioinformatics; 2010 Jun; 26(12):i310-7. PubMed ID: 20529922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo backbone scaffolds for protein design.
    MacDonald JT; Maksimiak K; Sadowski MI; Taylor WR
    Proteins; 2010 Apr; 78(5):1311-25. PubMed ID: 20017215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding of chains with random and edited sequences: similarities and differences.
    Galzitskaya OV; Finkelstein AV
    Protein Eng; 1995 Sep; 8(9):883-92. PubMed ID: 8746726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo prediction of protein folding pathways and structure using the principle of sequential stabilization.
    Adhikari AN; Freed KF; Sosnick TR
    Proc Natl Acad Sci U S A; 2012 Oct; 109(43):17442-7. PubMed ID: 23045636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring "dark-matter" protein folds using deep learning.
    Harteveld Z; Van Hall-Beauvais A; Morozova I; Southern J; Goverde C; Georgeon S; Rosset S; Defferrard M; Loukas A; Vandergheynst P; Bronstein MM; Correia BE
    Cell Syst; 2024 Oct; 15(10):898-910.e5. PubMed ID: 39383860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multicanonical Monte Carlo simulations of a de novo designed protein with end-to-end β-sheet.
    Uyaver S; Hansmann UH
    J Chem Phys; 2014 Feb; 140(6):065101. PubMed ID: 24527937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EvoDesign: De novo protein design based on structural and evolutionary profiles.
    Mitra P; Shultis D; Zhang Y
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W273-80. PubMed ID: 23671331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model.
    Kolinski A; Skolnick J
    Proteins; 1998 Sep; 32(4):475-94. PubMed ID: 9726417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring zipping and assembly as a protein folding principle.
    Voelz VA; Dill KA
    Proteins; 2007 Mar; 66(4):877-88. PubMed ID: 17154424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions.
    Mortuza SM; Zheng W; Zhang C; Li Y; Pearce R; Zhang Y
    Nat Commun; 2021 Aug; 12(1):5011. PubMed ID: 34408149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.