BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36657297)

  • 1. Requirements in structure for chiral recognition of chitosan derivatives.
    Gao YY; Chen W; Bai ZW
    J Chromatogr A; 2023 Feb; 1690():463783. PubMed ID: 36657297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interactions between chiral analytes and chitosan-based chiral stationary phases during enantioseparation.
    Chen W; Jiang JZ; Qiu GS; Tang S; Bai ZW
    J Chromatogr A; 2021 Aug; 1650():462259. PubMed ID: 34090134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eluent Tolerance and Enantioseparation Recovery of Chiral Packing Materials Based on Chitosan Bis(Phenylcarbamate)-(n-Octyl Urea)s for High Performance Liquid Chromatography.
    Wang J; Huang SH; Chen W; Bai ZW
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.
    Tang S; Bin Q; Chen W; Bai ZW; Huang SH
    J Chromatogr A; 2016 Apr; 1440():112-122. PubMed ID: 26931425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance comparison of chiral separation materials derived from N-cyclohexylcarbonyl and N-hexanoyl chitosans.
    Tang S; Liu JD; Chen W; Huang SH; Zhang J; Bai ZW
    J Chromatogr A; 2018 Jan; 1532():112-123. PubMed ID: 29246422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioseparation using chitosan 2-isopropylthiourea-3,6-dicarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Deng H; Wu X; Gao H; Shen J; Cao H; Qiao Y; Okamoto Y
    J Chromatogr A; 2020 Jul; 1623():461174. PubMed ID: 32505278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Shen J; Zuo W; Okamoto Y
    J Chromatogr A; 2014 Oct; 1365():86-93. PubMed ID: 25262030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral separation materials based on derivatives of 6-amino-6-deoxyamylose.
    Gao YY; Zhang YH; Zhang S; Chen W; Bai ZW
    Chirality; 2021 Dec; 33(12):899-914. PubMed ID: 34608664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Acylated chitosan bis(arylcarbamate)s: A class of promising chiral separation materials with powerful enantioseparation capability and high eluents tolerability.
    Tang S; Liu JD; Bin Q; Fu KQ; Wang XC; Luo YB; Huang SH; Bai ZW
    J Chromatogr A; 2016 Dec; 1476():53-62. PubMed ID: 27863711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison in enantioseparation performance of chiral stationary phases prepared from chitosans of different sources and molecular weights.
    Zhang GH; Xi JB; Chen W; Bai ZW
    J Chromatogr A; 2020 Jun; 1621():461029. PubMed ID: 32192704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure screening and performance restoration of chiral separation materials based on chitosan derivatives.
    Zhang GH; Fu KQ; Xi JB; Chen W; Tang S; Bai ZW
    Carbohydr Polym; 2019 Jun; 214():259-268. PubMed ID: 30925995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography.
    Shen J; Zhao Y; Inagaki S; Yamamoto C; Shen Y; Liu S; Okamoto Y
    J Chromatogr A; 2013 Apr; 1286():41-6. PubMed ID: 23506702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and application of chitosan thiourea derivatives as chiral stationary phases in HPLC.
    Deng H; Wu X; Zhang L; Shen J; Qiao Y; Wang X; Bai C; Zheng T; Okamoto Y
    Carbohydr Polym; 2022 Nov; 296():119888. PubMed ID: 36087965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance chiral stationary phases based on chitosan derivatives with a branched-chain alkyl urea.
    Liang S; Huang SH; Chen W; Bai ZW
    Anal Chim Acta; 2017 Sep; 985():183-193. PubMed ID: 28864189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioseparation characteristics of biselector chiral stationary phases based on derivatives of cellulose and amylose.
    Wang ZQ; Liu JD; Chen W; Bai ZW
    J Chromatogr A; 2014 Jun; 1346():57-68. PubMed ID: 24792697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective modification at the 2,3- and 6-positions of chitosan with phenylcarbamates for chromatographic enantioseparation.
    Deng H; Qiao Y; Zheng T; Bai C; Wang G; Zhang L; Shen J
    J Chromatogr A; 2024 Jan; 1714():464503. PubMed ID: 38104505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Enantioseparation of Biselector Chiral Stationary Phases Based on Amylose and Chitin Derivatives.
    Zhang J; Wang ZQ; Chen W; Bai ZW
    Anal Sci; 2015; 31(10):1091-7. PubMed ID: 26460376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography.
    Shen J; Li G; Yang Z; Okamoto Y
    J Chromatogr A; 2016 Oct; 1467():199-205. PubMed ID: 27452988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural dependence on the property of chiral stationary phases derived from chitosan bis(arylcarbamate)-(amide)s.
    Feng ZW; Qiu GS; Mei XM; Liang S; Yang F; Huang SH; Chen W; Bai ZW
    Carbohydr Polym; 2017 Jul; 168():301-309. PubMed ID: 28457453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.