These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 36657736)

  • 1. Linguistic Analysis Identifies Emergent Biomaterial Fabrication Trends for Orthopaedic Applications.
    Locke RC; Zlotnick HM; Stoeckl BD; Fryhofer GW; Galarraga JH; Dhand AP; Zgonis MH; Carey JL; Burdick JA; Mauck RL
    Adv Healthc Mater; 2023 Apr; 12(10):e2202591. PubMed ID: 36657736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer scaffolds in orthopaedic tissue engineering.
    Atesok K; Doral MN; Karlsson J; Egol KA; Jazrawi LM; Coelho PG; Martinez A; Matsumoto T; Owens BD; Ochi M; Hurwitz SR; Atala A; Fu FH; Lu HH; Rodeo SA
    Knee Surg Sports Traumatol Arthrosc; 2016 Jul; 24(7):2365-73. PubMed ID: 25466277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Musculoskeletal Tissue Engineering Using Fibrous Biomaterials.
    Tan G; Zhou Y; Sooriyaarachchi D
    Methods Mol Biol; 2021; 2193():31-40. PubMed ID: 32808256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting in orthopedics translational research.
    Zheng X; Huang J; Lin J; Yang D; Xu T; Chen D; Zan X; Wu A
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1172-1187. PubMed ID: 31124402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.
    Chen X; Han S; Wu W; Wu Z; Yuan Y; Wu J; Liu C
    Small; 2022 Sep; 18(36):e2106824. PubMed ID: 35060321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue.
    Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ
    Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.