These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36657847)

  • 21. Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses.
    Szymańska-Chargot M; Chylińska M; Pieczywek PM; Zdunek A
    Carbohydr Polym; 2019 Apr; 210():186-195. PubMed ID: 30732753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system.
    Chen YW; Hasanulbasori MA; Chiat PF; Lee HV
    Int J Biol Macromol; 2019 Feb; 123():1305-1319. PubMed ID: 30292586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced High Thermal Conductivity Cellulose Filaments via Hydrodynamic Focusing.
    Wang G; Kudo M; Daicho K; Harish S; Xu B; Shao C; Lee Y; Liao Y; Matsushima N; Kodama T; Lundell F; Söderberg LD; Saito T; Shiomi J
    Nano Lett; 2022 Nov; 22(21):8406-8412. PubMed ID: 36283691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in Biomedical Application of Nanocellulose-Based Materials: A Review.
    Yuan Q; Bian J; Ma MG
    Curr Med Chem; 2021; 28(40):8275-8295. PubMed ID: 33256574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upcycling Food By-products: Characteristics and Applications of Nanocellulose.
    Kim M; Doh H
    Chem Asian J; 2024 Mar; 19(6):e202301068. PubMed ID: 38246883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications.
    Patil TV; Patel DK; Dutta SD; Ganguly K; Santra TS; Lim KT
    Bioact Mater; 2022 Mar; 9():566-589. PubMed ID: 34820589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review.
    Noremylia MB; Hassan MZ; Ismail Z
    Int J Biol Macromol; 2022 May; 206():954-976. PubMed ID: 35304199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.
    Shankar S; Rhim JW
    Carbohydr Polym; 2016 Jan; 135():18-26. PubMed ID: 26453846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization.
    Patel DK; Dutta SD; Hexiu J; Ganguly K; Lim KT
    Carbohydr Polym; 2022 Apr; 281():119077. PubMed ID: 35074128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bottom-up assembly of nanocellulose structures.
    Niinivaara E; Cranston ED
    Carbohydr Polym; 2020 Nov; 247():116664. PubMed ID: 32829792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The versatility of nanocellulose, modification strategies, and its current progress in wastewater treatment and environmental remediation.
    Shahzad A; Ullah MW; Ali J; Aziz K; Javed MA; Shi Z; Manan S; Ul-Islam M; Nazar M; Yang G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159937. PubMed ID: 36343829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials.
    Dai L; Wang Y; Zou X; Chen Z; Liu H; Ni Y
    Small; 2020 Apr; 16(13):e1906567. PubMed ID: 32049432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review of the Surface Modification of Cellulose and Nanocellulose Using Aliphatic and Aromatic Mono- and Di-Isocyanates.
    Abushammala H; Mao J
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31370227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.
    Satyamurthy P; Vigneshwaran N
    Enzyme Microb Technol; 2013 Jan; 52(1):20-5. PubMed ID: 23199734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles.
    Saremi R; Borodinov N; Laradji AM; Sharma S; Luzinov I; Minko S
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications.
    Meftahi A; Samyn P; Geravand SA; Khajavi R; Alibkhshi S; Bechelany M; Barhoum A
    Carbohydr Polym; 2022 Feb; 278():118956. PubMed ID: 34973772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review.
    Norizan MN; Shazleen SS; Alias AH; Sabaruddin FA; Asyraf MRM; Zainudin ES; Abdullah N; Samsudin MS; Kamarudin SH; Norrrahim MNF
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Titanium surface with nanospikes tunes macrophage polarization to produce inhibitory factors for osteoclastogenesis through nanotopographic cues.
    Kartikasari N; Yamada M; Watanabe J; Tiskratok W; He X; Kamano Y; Egusa H
    Acta Biomater; 2022 Jan; 137():316-330. PubMed ID: 34673230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.