These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36657867)
1. Machine learning-assisted laser-induced breakdown spectroscopy for monitoring molten salt compositions of small modular reactor fuel under varying laser focus positions. Lee Y; Foster RI; Kim H; Choi S Anal Chim Acta; 2023 Feb; 1241():340804. PubMed ID: 36657867 [TBL] [Abstract][Full Text] [Related]
2. Data Fusion of Acoustic and Optical Emission from Laser-Induced Plasma for In Situ Measurement of Rare Earth Elements in Molten LiCl-KCl. Lee Y; Foster RI; Kim H; Garrett L; Morgan BW; Burger M; Jovanovic I; Choi S Anal Chem; 2024 Jul; 96(28):11255-11262. PubMed ID: 38967238 [TBL] [Abstract][Full Text] [Related]
3. Novel Calibration Approach for Monitoring Aerosol Hydrogen Isotopes Using Laser-Induced Breakdown Spectroscopy for Molten Salt Reactor Off-Gas Streams. Andrews HB; McFarlane J Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139646 [TBL] [Abstract][Full Text] [Related]
4. Monitoring Noble Gases (Xe and Kr) and Aerosols (Cs and Rb) in a Molten Salt Reactor Surrogate Off-Gas Stream Using Laser-Induced Breakdown Spectroscopy (LIBS). Andrews HB; McFarlane J; Myhre KG Appl Spectrosc; 2022 Aug; 76(8):988-997. PubMed ID: 35537200 [TBL] [Abstract][Full Text] [Related]
5. Quantification of Lanthanides in a Molten Salt Reactor Surrogate Off-Gas Stream Using Laser-Induced Breakdown Spectroscopy. Andrews HB; Myhre KG Appl Spectrosc; 2022 Aug; 76(8):877-886. PubMed ID: 35323059 [TBL] [Abstract][Full Text] [Related]
6. Laser-Induced Breakdown Spectroscopy (LIBS) Measurement of Uranium in Molten Salt. Williams A; Phongikaroon S Appl Spectrosc; 2018 Jul; 72(7):1029-1039. PubMed ID: 29911414 [TBL] [Abstract][Full Text] [Related]
8. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System. Williams AN; Phongikaroon S Appl Spectrosc; 2017 Apr; 71(4):744-749. PubMed ID: 27329833 [TBL] [Abstract][Full Text] [Related]
9. Detection of Off-Gassed Products From Molten Salts Using Laser-Induced Breakdown Spectroscopy. Diaz D; Hahn DW Appl Spectrosc; 2023 Sep; 77(9):1033-1043. PubMed ID: 37434427 [TBL] [Abstract][Full Text] [Related]
10. Measurement of Cerium and Gadolinium in Solid Lithium Chloride-Potassium Chloride Salt Using Laser-Induced Breakdown Spectroscopy (LIBS). Williams A; Bryce K; Phongikaroon S Appl Spectrosc; 2017 Oct; 71(10):2302-2312. PubMed ID: 28497981 [TBL] [Abstract][Full Text] [Related]
12. Modeling of fission and activation products in molten salt reactors and their potential impact on the radionuclide monitoring stations of the International Monitoring System. Johnson C; Slack JL; Sharma MK; Simpson CK; Burnett JL J Environ Radioact; 2021 Aug; 234():106625. PubMed ID: 33957486 [TBL] [Abstract][Full Text] [Related]
14. Applications of Thermochemical Modeling in Molten Salt Reactors. Besmann TM; Schorne-Pinto J; Aziziha M; Mofrad AM; Booth RE; Yingling JA; Paz Soldan Palma J; Dixon CM; Wilson JA; Hartanto D Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276434 [TBL] [Abstract][Full Text] [Related]
15. Monitoring Xenon Capture in a Metal Organic Framework Using Laser-Induced Breakdown Spectroscopy. Andrews HB; Thallapally PK; Robinson AJ Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677143 [TBL] [Abstract][Full Text] [Related]
16. Two-Step Partial Least Squares-Discriminant Analysis Modeling for Accurate Classification of Edible Sea Salt Products Using Laser-Induced Breakdown Spectroscopy. Park J; Kumar S; Han SH; Singh VK; Nam SH; Lee Y Appl Spectrosc; 2022 Sep; 76(9):1042-1050. PubMed ID: 35311386 [TBL] [Abstract][Full Text] [Related]
17. Comparative Studies of the Structural and Transport Properties of Molten Salt FLiNaK Using the Machine-Learned Neural Network and Reparametrized Classical Forcefields. Lee SC; Zhai Y; Li Z; Walter NP; Rose M; Heuser BJ; Z Y J Phys Chem B; 2021 Sep; 125(37):10562-10570. PubMed ID: 34496565 [TBL] [Abstract][Full Text] [Related]
18. In-Situ Analysis of Corrosion Products in Molten Salt: X-ray Absorption Reveals Both Ionic and Metallic Species. Fayfar S; Zheng G; Sprouster D; Marshall MSJ; Stavitski E; Leshchev D; Khaykovich B ACS Omega; 2023 Jul; 8(27):24673-24679. PubMed ID: 37457454 [TBL] [Abstract][Full Text] [Related]
19. Research on anthracnose grade of Camellia oleifera based on the combined LIBS and THz technology. Bin L; Qiu W; Chao-Hui Z; Zhao-Yang H; Hai Y; Jun L; Yan-de L Plant Methods; 2022 Apr; 18(1):52. PubMed ID: 35443667 [TBL] [Abstract][Full Text] [Related]
20. Optimizing analysis of coal property using laser-induced breakdown and near-infrared reflectance spectroscopies. Yao S; Qin H; Wang Q; Lu Z; Yao X; Yu Z; Chen X; Zhang L; Lu J Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118492. PubMed ID: 32470810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]