BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36658131)

  • 1. The molecular evolution of genes previously associated with large sizes reveals possible pathways to cetacean gigantism.
    Silva FA; Souza ÉMS; Ramos E; Freitas L; Nery MF
    Sci Rep; 2023 Jan; 13(1):67. PubMed ID: 36658131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of enrichment and acceleration in evolutionary rates of promoters suggest a role of regulatory regions in cetacean gigantism.
    Silva FA; Picorelli ACR; Veiga GS; Nery MF
    BMC Ecol Evol; 2023 Oct; 23(1):62. PubMed ID: 37872505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into body size variation in cetaceans from the evolution of body-size-related genes.
    Sun Y; Liu Y; Sun X; Lin Y; Yin D; Xu S; Yang G
    BMC Evol Biol; 2019 Jul; 19(1):157. PubMed ID: 31351448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans.
    Zhou X; Sun D; Guang X; Ma S; Fang X; Mariotti M; Nielsen R; Gladyshev VN; Yang G
    Genome Biol Evol; 2018 Mar; 10(3):967-975. PubMed ID: 29608729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer.
    Tejada-Martinez D; de Magalhães JP; Opazo JC
    Proc Biol Sci; 2021 Feb; 288(1945):20202592. PubMed ID: 33622125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans.
    Tian R; Seim I; Zhang Z; Yang Y; Ren W; Xu S; Yang G
    Genes Genomics; 2019 Dec; 41(12):1417-1430. PubMed ID: 31535317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional variants of the melanocortin-4 receptor associated with the Odontoceti and Mysticeti suborders of cetaceans.
    Zhao L; Zhou X; Rokas A; Cone RD
    Sci Rep; 2017 Jul; 7(1):5684. PubMed ID: 28720755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.
    Shen T; Xu S; Wang X; Yu W; Zhou K; Yang G
    BMC Evol Biol; 2012 Mar; 12():39. PubMed ID: 22443485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation.
    Xu S; Yang Y; Zhou X; Xu J; Zhou K; Yang G
    BMC Evol Biol; 2013 Sep; 13():189. PubMed ID: 24015756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rod monochromacy and the coevolution of cetacean retinal opsins.
    Meredith RW; Gatesy J; Emerling CA; York VM; Springer MS
    PLoS Genet; 2013 Apr; 9(4):e1003432. PubMed ID: 23637615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Return to the Sea, Get Huge, Beat Cancer: An Analysis of Cetacean Genomes Including an Assembly for the Humpback Whale (Megaptera novaeangliae).
    Tollis M; Robbins J; Webb AE; Kuderna LFK; Caulin AF; Garcia JD; Bèrubè M; Pourmand N; Marques-Bonet T; O'Connell MJ; Palsbøll PJ; Maley CC
    Mol Biol Evol; 2019 Aug; 36(8):1746-1763. PubMed ID: 31070747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans.
    Arnason U; Gullberg A
    Mol Biol Evol; 1996 Feb; 13(2):407-17. PubMed ID: 8587505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.
    São Pedro SL; Alves JM; Barreto AS; Lima AO
    PLoS One; 2015; 10(7):e0134516. PubMed ID: 26226365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper.
    Wang Z; Yuan L; Rossiter SJ; Zuo X; Ru B; Zhong H; Han N; Jones G; Jepson PD; Zhang S
    Mol Biol Evol; 2009 Mar; 26(3):613-22. PubMed ID: 19074008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitogenomic analyses provide new insights into cetacean origin and evolution.
    Arnason U; Gullberg A; Janke A
    Gene; 2004 May; 333():27-34. PubMed ID: 15177677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds.
    Selleghin-Veiga G; Magpali L; Picorelli A; Silva FA; Ramos E; Nery MF
    J Mol Evol; 2024 Jun; 92(3):300-316. PubMed ID: 38735005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated evolution and diversifying selection drove the adaptation of cetacean bone microstructure.
    Sun D; Zhou X; Yu Z; Xu S; Seim I; Yang G
    BMC Evol Biol; 2019 Oct; 19(1):194. PubMed ID: 31651232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification.
    Ishengoma E; Agaba M
    BMC Evol Biol; 2017 Feb; 17(1):54. PubMed ID: 28209121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple origins of gigantism in stem baleen whales.
    Tsai CH; Kohno N
    Naturwissenschaften; 2016 Dec; 103(11-12):89. PubMed ID: 27717969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the revolution of cetacean evolution.
    Mancia A
    Mar Genomics; 2018 Oct; 41():1-5. PubMed ID: 30154054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.