These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36658892)

  • 21. Universal quantum computing using single-particle discrete-time quantum walk.
    Singh S; Chawla P; Sarkar A; Chandrashekar CM
    Sci Rep; 2021 Jun; 11(1):11551. PubMed ID: 34078984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient synthesis of universal repeat-until-success quantum circuits.
    Bocharov A; Roetteler M; Svore KM
    Phys Rev Lett; 2015 Feb; 114(8):080502. PubMed ID: 25768742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum walk processes in quantum devices.
    Madhu AK; Melnikov AA; Fedichkin LE; Alodjants AP; Lee RK
    Heliyon; 2023 Mar; 9(3):e13416. PubMed ID: 36895413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validating quantum-classical programming models with tensor network simulations.
    McCaskey A; Dumitrescu E; Chen M; Lyakh D; Humble T
    PLoS One; 2018; 13(12):e0206704. PubMed ID: 30532151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental comparison of two quantum computing architectures.
    Linke NM; Maslov D; Roetteler M; Debnath S; Figgatt C; Landsman KA; Wright K; Monroe C
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3305-3310. PubMed ID: 28325879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Universal quantum simulation of single-qubit nonunitary operators using duality quantum algorithm.
    Zheng C
    Sci Rep; 2021 Feb; 11(1):3960. PubMed ID: 33597681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Demonstration of two-qubit algorithms with a superconducting quantum processor.
    DiCarlo L; Chow JM; Gambetta JM; Bishop LS; Johnson BR; Schuster DI; Majer J; Blais A; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2009 Jul; 460(7252):240-4. PubMed ID: 19561592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluxonium: An Alternative Qubit Platform for High-Fidelity Operations.
    Bao F; Deng H; Ding D; Gao R; Gao X; Huang C; Jiang X; Ku HS; Li Z; Ma X; Ni X; Qin J; Song Z; Sun H; Tang C; Wang T; Wu F; Xia T; Yu W; Zhang F; Zhang G; Zhang X; Zhou J; Zhu X; Shi Y; Chen J; Zhao HH; Deng C
    Phys Rev Lett; 2022 Jul; 129(1):010502. PubMed ID: 35841558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A two-qubit logic gate in silicon.
    Veldhorst M; Yang CH; Hwang JC; Huang W; Dehollain JP; Muhonen JT; Simmons S; Laucht A; Hudson FE; Itoh KM; Morello A; Dzurak AS
    Nature; 2015 Oct; 526(7573):410-4. PubMed ID: 26436453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Operation of a silicon quantum processor unit cell above one kelvin.
    Yang CH; Leon RCC; Hwang JCC; Saraiva A; Tanttu T; Huang W; Camirand Lemyre J; Chan KW; Tan KY; Hudson FE; Itoh KM; Morello A; Pioro-Ladrière M; Laucht A; Dzurak AS
    Nature; 2020 Apr; 580(7803):350-354. PubMed ID: 32296190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QuEST and High Performance Simulation of Quantum Computers.
    Jones T; Brown A; Bush I; Benjamin SC
    Sci Rep; 2019 Jul; 9(1):10736. PubMed ID: 31341200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping of topological quantum circuits to physical hardware.
    Paler A; Devitt SJ; Nemoto K; Polian I
    Sci Rep; 2014 Apr; 4():4657. PubMed ID: 24722360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A blueprint for demonstrating quantum supremacy with superconducting qubits.
    Neill C; Roushan P; Kechedzhi K; Boixo S; Isakov SV; Smelyanskiy V; Megrant A; Chiaro B; Dunsworth A; Arya K; Barends R; Burkett B; Chen Y; Chen Z; Fowler A; Foxen B; Giustina M; Graff R; Jeffrey E; Huang T; Kelly J; Klimov P; Lucero E; Mutus J; Neeley M; Quintana C; Sank D; Vainsencher A; Wenner J; White TC; Neven H; Martinis JM
    Science; 2018 Apr; 360(6385):195-199. PubMed ID: 29650670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A programmable two-qubit quantum processor in silicon.
    Watson TF; Philips SGJ; Kawakami E; Ward DR; Scarlino P; Veldhorst M; Savage DE; Lagally MG; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LMK
    Nature; 2018 Mar; 555(7698):633-637. PubMed ID: 29443962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Energy Landscapes of Hardware-Efficient Ansätze in Quantum Computing.
    Choy B; Wales DJ
    J Chem Theory Comput; 2023 Feb; 19(4):1197-1206. PubMed ID: 36749922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits.
    Gong M; Yuan X; Wang S; Wu Y; Zhao Y; Zha C; Li S; Zhang Z; Zhao Q; Liu Y; Liang F; Lin J; Xu Y; Deng H; Rong H; Lu H; Benjamin SC; Peng CZ; Ma X; Chen YA; Zhu X; Pan JW
    Natl Sci Rev; 2022 Jan; 9(1):nwab011. PubMed ID: 35070323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-qubit Quantum Rabi Model and Multi-partite Entangled States in a Circuit QED System.
    Li J; Wang G; Xiao R; Sun C; Wu C; Xue K
    Sci Rep; 2019 Feb; 9(1):1380. PubMed ID: 30718592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Realization of three-qubit quantum error correction with superconducting circuits.
    Reed MD; DiCarlo L; Nigg SE; Sun L; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2012 Feb; 482(7385):382-5. PubMed ID: 22297844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correcting Coherent Errors by Random Operation on Actual Quantum Hardware.
    Cenedese G; Benenti G; Bondani M
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Logical measurement-based quantum computation in circuit-QED.
    Joo J; Lee CW; Kono S; Kim J
    Sci Rep; 2019 Nov; 9(1):16592. PubMed ID: 31719588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.