These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36659145)

  • 1. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting.
    Kang Y; Chen R; Zhen C; Wang L; Liu G; Cheng HM
    Sci Bull (Beijing); 2020 Jul; 65(14):1163-1169. PubMed ID: 36659145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
    Iqbal N; Khan I; Ali A; Qurashi A
    J Adv Res; 2022 Feb; 36():15-26. PubMed ID: 35127161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting.
    Choi H; Seo S; Yoon CJ; Ahn JB; Kim CS; Jung Y; Kim Y; Toma FM; Kim H; Lee S
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303106. PubMed ID: 37752753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of SnO
    Shaban M; Almohammedi A; Saad R; El Sayed AM
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Solar Hydrogen Sensitivity of GeSe Thin Film Photoelectrode with Photoelectrochemical Environment.
    Ni H; Fang Y; Hu Y; Xiao G; Wu X; Jiang F
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46861-46871. PubMed ID: 37769166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem cells for unbiased photoelectrochemical water splitting.
    Liu B; Wang S; Zhang G; Gong Z; Wu B; Wang T; Gong J
    Chem Soc Rev; 2023 Jul; 52(14):4644-4671. PubMed ID: 37325843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.
    Wang W; Xu M; Xu X; Zhou W; Shao Z
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):136-152. PubMed ID: 30790407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Electrodialysis-Assisted Solar Water Splitting.
    Lee J; Yun J; Kwon SR; Chang WJ; Nam KT; Chung TD
    Sci Rep; 2017 Sep; 7(1):12281. PubMed ID: 28947802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triboelectric Nanogenerator Driven Self-Powered Photoelectrochemical Water Splitting Based on Hematite Photoanodes.
    Wei A; Xie X; Wen Z; Zheng H; Lan H; Shao H; Sun X; Zhong J; Lee ST
    ACS Nano; 2018 Aug; 12(8):8625-8632. PubMed ID: 30036045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar-Driven Photoelectrochemical Performance of Novel ZnO/Ag
    Mustafa E; Adam RE; Rouf P; Willander M; Nur O
    Nanoscale Res Lett; 2021 Aug; 16(1):133. PubMed ID: 34417906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed Cu
    Ahn J; Lee S; Kim JH; Wajahat M; Sim HH; Bae J; Pyo J; Jahandar M; Lim DC; Seol SK
    Nanoscale Adv; 2020 Dec; 2(12):5600-5606. PubMed ID: 36133885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical study of carbon-modified p-type Cu
    Kaneza N; Shinde PS; Ma Y; Pan S
    RSC Adv; 2019 Apr; 9(24):13576-13585. PubMed ID: 35519550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezoelectric Materials and Pyroelectric Materials:High Efficient Catalysts for Photoelectrochemical Water Splitting.
    Wang C; Liu Z
    Chemphyschem; 2024 May; ():e202400227. PubMed ID: 38808500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elaborately Modified BiVO
    Kim JH; Lee JS
    Adv Mater; 2019 May; 31(20):e1806938. PubMed ID: 30793384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seebeck-voltage-triggered self-biased photoelectrochemical water splitting using HfO
    Jung JY; Woong Kim D; Kim DH; Joo Park T; Wehrspohn RB; Lee JH
    Sci Rep; 2019 Jun; 9(1):9132. PubMed ID: 31235765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.