These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36659225)

  • 21. Electrochemical ammonia synthesis by reduction of nitrate on Au doped Cu nanowires.
    Zha Y; Liu M; Wang J; Feng J; Li D; Zhao D; Zhang S; Shi T
    RSC Adv; 2023 Mar; 13(15):9839-9844. PubMed ID: 36998524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal-Phase-Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis.
    Tong W; Huang B; Wang P; Li L; Shao Q; Huang X
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2649-2653. PubMed ID: 31765075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core-Shell Au@SnO
    Pan X; Zheng J; Zhang L; Yi Z
    Inorg Chem; 2019 Aug; 58(16):11164-11171. PubMed ID: 31379163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spinel ferrite catalyst for efficient electroreduction of dinitrogen to ammonia.
    Tian Y; Shao X; Zhu M; Liu W; Wei Z; Chu K
    Dalton Trans; 2020 Sep; 49(36):12559-12564. PubMed ID: 32926054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO
    Fu Y; Wang T; Zheng W; Lei C; Yang B; Chen J; Li Z; Lei L; Yuan C; Hou Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16178-16185. PubMed ID: 32186359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Atomically Dispersed Sn Protuberance.
    Zhang L; Zhou H; Yang X; Zhang S; Zhang H; Yang X; Su X; Zhang J; Lin Z
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217473. PubMed ID: 36738169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions.
    Lv C; Qian Y; Yan C; Ding Y; Liu Y; Chen G; Yu G
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10246-10250. PubMed ID: 29947048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Electrocatalytic Nitrogen Fixation on FeMoO
    Chu K; Li QQ; Cheng YH; Liu YP
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11789-11796. PubMed ID: 32091874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen and Titanium Vacancies in a BiOBr/MXene-Ti
    Fang Y; Cao Y; Tan B; Chen Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42624-42634. PubMed ID: 34467762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ternary AuPS Alloy Mesoporous Film for Efficient Electroreduction of Nitrogen to Ammonia.
    Dai Z; Tian W; Wang Z; Yu H; Zhang H; Xu Y; Li X; Wang L; Wang H
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28057-28063. PubMed ID: 34107676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MOF-Derived Co
    Luo S; Li X; Zhang B; Luo Z; Luo M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26891-26897. PubMed ID: 31262170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical insights into the electroreduction mechanism of N
    Ou L; Jin J; Chen Y
    RSC Adv; 2021 May; 11(29):17828-17839. PubMed ID: 35480174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical nitrogen fixation via bimetallic Sn-Ti sites on defective titanium oxide catalysts.
    Cao N; Wei Z; Xu J; Luo J; Guan A; Al-Enizi AM; Ma J; Zheng G
    J Colloid Interface Sci; 2021 Apr; 588():242-247. PubMed ID: 33388584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased Oxygen Vacancies in CeO
    Li J; Wang Y; Lu X; Guo K; Xu C
    Inorg Chem; 2022 Oct; 61(43):17242-17247. PubMed ID: 36268836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical evaluation of the effect of bimetallic Au-based alloy catalysts on initial N
    Zheng W; Ou L; Chen K; Qin Y
    Phys Chem Chem Phys; 2022 Jul; 24(27):16908-16921. PubMed ID: 35789235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Boosting electrocatalytic reduction of nitrogen to ammonia under ambient conditions by alloy engineering.
    Jin Y; Ding X; Zhang L; Cong M; Xu F; Wei Y; Hao S; Gao Y
    Chem Commun (Camb); 2020 Sep; 56(77):11477-11480. PubMed ID: 32856638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced electrocatalytic N
    Xu T; Ma D; Li T; Yue L; Luo Y; Lu S; Shi X; Asiri AM; Yang C; Sun X
    Chem Commun (Camb); 2020 Nov; 56(90):14031-14034. PubMed ID: 33099589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amorphous/Crystalline Hetero-Phase TiO
    Qiu W; Luo YX; Liang RP; Qiu JD
    Chemistry; 2020 Aug; 26(45):10226-10229. PubMed ID: 32227370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High temperature induced S vacancies in natural molybdenite for robust electrocatalytic nitrogen reduction.
    You M; Yi S; Hou X; Wang Z; Ji H; Zhang L; Wang Y; Zhang Z; Chen D
    J Colloid Interface Sci; 2021 Oct; 599():849-856. PubMed ID: 33991801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zn- and Ti-Doped SnO
    Bejtka K; Monti NBD; Sacco A; Castellino M; Porro S; Farkhondehfal MA; Zeng J; Pirri CF; Chiodoni A
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34062766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.