These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36659248)

  • 1. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics.
    Yu Y; Guo J; Ma B; Zhang D; Zhao Y
    Sci Bull (Beijing); 2020 Oct; 65(20):1752-1759. PubMed ID: 36659248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear-flow-induced graphene coating microfibers from microfluidic spinning.
    Yu Y; Guo J; Zhang H; Wang X; Yang C; Zhao Y
    Innovation (Camb); 2022 Mar; 3(2):100209. PubMed ID: 35199079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Stretchable, Weavable, and Washable Piezoresistive Microfiber Sensors.
    Yu L; Yeo JC; Soon RH; Yeo T; Lee HH; Lim CT
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12773-12780. PubMed ID: 29582649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Metal-Based Soft Microfluidics.
    Zhu L; Wang B; Handschuh-Wang S; Zhou X
    Small; 2020 Mar; 16(9):e1903841. PubMed ID: 31573755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid Metal Droplets-Based Elastomers from Electric Toothbrush-Inspired Revolving Microfluidics.
    Wang Y; Li J; Sun L; Chen H; Ye F; Zhao Y; Shang L
    Adv Mater; 2023 May; 35(20):e2211731. PubMed ID: 36881673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring.
    Guo J; Yu Y; Zhang H; Sun L; Zhao Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47800-47806. PubMed ID: 34590841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Multifunctional Spindle-Knotted Microfibers from Microfluidics.
    Shang L; Fu F; Cheng Y; Yu Y; Wang J; Gu Z; Zhao Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27071374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing.
    Zheng L; Zhu M; Wu B; Li Z; Sun S; Wu P
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34049879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Helical Microfibers from Microfluidics.
    Yu Y; Fu F; Shang L; Cheng Y; Gu Z; Zhao Y
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications.
    Yu L; Feng Y; S/O M Tamil Selven D; Yao L; Soon RH; Yeo JC; Lim CT
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33347-33355. PubMed ID: 31424908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics.
    Yu Y; Guo J; Sun L; Zhang X; Zhao Y
    Research (Wash D C); 2019; 2019():6906275. PubMed ID: 31549079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Tactile Sensing Microfibers Based On Liquid Metals.
    Liang S; Li J; Li F; Hu L; Chen W; Yang C
    ACS Omega; 2022 Apr; 7(15):12891-12899. PubMed ID: 35474773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Strength and Extensible Electrospun Yarn for Wearable Electronics.
    Uzabakiriho PC; Wang M; Wang K; Ma C; Zhao G
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):46068-46076. PubMed ID: 36169212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin.
    Guo J; Yu Y; Zhang D; Zhang H; Zhao Y
    Research (Wash D C); 2021; 2021():7065907. PubMed ID: 33763650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.