These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36659373)

  • 1. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation.
    Li W; Wang H; Hao Y
    Sci Bull (Beijing); 2017 Oct; 62(20):1380-1387. PubMed ID: 36659373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production and solar energy storage with thermo-electrochemically enhanced steam methane reforming.
    Guo K; Liu M; Wang B; Lou J; Hao Y; Pei G; Jin H
    Sci Bull (Beijing); 2024 Apr; 69(8):1109-1121. PubMed ID: 38413331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon-enhanced thermionic emission for solar concentrator systems.
    Schwede JW; Bargatin I; Riley DC; Hardin BE; Rosenthal SJ; Sun Y; Schmitt F; Pianetta P; Howe RT; Shen ZX; Melosh NA
    Nat Mater; 2010 Sep; 9(9):762-7. PubMed ID: 20676086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process analysis of solar steam reforming of methane for producing low-carbon hydrogen.
    Shagdar E; Lougou BG; Shuai Y; Ganbold E; Chinonso OP; Tan H
    RSC Adv; 2020 Mar; 10(21):12582-12597. PubMed ID: 35497614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon-enhanced thermionic emission from heterostructures with low interface recombination.
    Schwede JW; Sarmiento T; Narasimhan VK; Rosenthal SJ; Riley DC; Schmitt F; Bargatin I; Sahasrabuddhe K; Howe RT; Harris JS; Melosh NA; Shen ZX
    Nat Commun; 2013; 4():1576. PubMed ID: 23481384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances of hybrid solar - Biomass thermo-chemical conversion systems.
    Jie Ling JL; Go ES; Park YK; Lee SH
    Chemosphere; 2022 Mar; 290():133245. PubMed ID: 34914949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel concepts and nanostructured materials for thermionic-based solar and thermal energy converters.
    Bellucci A; Girolami M; Mastellone M; Orlando S; Polini R; Santagata A; Serpente V; Valentini V; Trucchi DM
    Nanotechnology; 2021 Jan; 32(2):024002. PubMed ID: 32957094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated CO
    Papalas T; Antzaras AN; Lemonidou AA
    Energy Fuels; 2024 Jul; 38(13):11966-11979. PubMed ID: 38984063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermocells for Hybrid Photovoltaic/Thermal Systems.
    Shin G; Jeon JG; Kim JH; Lee JH; Kim HJ; Lee J; Kang KM; Kang TJ
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrated thermionic solar cells using graphene as the collector: theoretical efficiency limit and design rules.
    Zhang X; Sin Ang Y; Ang LK; Chen J
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34710863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor thermionics for next generation solar cells: photon enhanced or pure thermionic?
    Rahman E; Nojeh A
    Nat Commun; 2021 Jul; 12(1):4622. PubMed ID: 34330924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming.
    Wang H; Wang B; Lundin SB; Kong H; Su B; Wang J
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.
    Zhang C; Jun KW; Ha KS; Lee YJ; Kang SC
    Environ Sci Technol; 2014 Jul; 48(14):8251-7. PubMed ID: 24933030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic enhancement of production of solar thermochemical fuels: opportunities and limitations.
    Coronado JM; Bayón A
    Phys Chem Chem Phys; 2023 Jul; 25(26):17092-17106. PubMed ID: 37340776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact Steam-Methane Reforming for the Production of Hydrogen in Continuous Flow Microreactor Systems.
    Chen J; Song W; Xu D
    ACS Omega; 2019 Sep; 4(13):15600-15614. PubMed ID: 31572861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the role of steam methane reforming with CO
    Navas-Anguita Z; García-Gusano D; Dufour J; Iribarren D
    Sci Total Environ; 2021 Jun; 771():145432. PubMed ID: 33736161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Thermodynamic Analysis of a Novel Solar CBS-PVT System Using Film-Based Beam Splitting Technology.
    Wang G; Liu J; Chen Z
    Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38248157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.