These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36659563)

  • 1. Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges.
    Shi K; Zhang Y; Qin B; Zhou B
    Sci Bull (Beijing); 2019 Oct; 64(20):1540-1556. PubMed ID: 36659563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea.
    Moradi M
    Mar Pollut Bull; 2014 Oct; 87(1-2):311-322. PubMed ID: 25148755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data.
    Dev PJ; Sukenik A; Mishra DR; Ostrovsky I
    Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T; Jia Y; Shum CK; Lee J
    Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing.
    Urquhart EA; Schaeffer BA; Stumpf RP; Loftin KA; Werdell PJ
    Harmful Algae; 2017 Jul; 67():144-152. PubMed ID: 28755717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales.
    Coffer MM; Schaeffer BA; Salls WB; Urquhart E; Loftin KA; Stumpf RP; Werdell PJ; Darling JA
    Ecol Indic; 2021 Sep; 128():1-107822. PubMed ID: 35558093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
    Cook KV; Beyer JE; Xiao X; Hambright KD
    Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe.
    Song K; Li L; Tedesco L; Clercin N; Hall B; Li S; Shi K; Liu D; Sun Y
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5330-40. PubMed ID: 23397212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A risk assessment method for remote sensing of cyanobacterial blooms in inland waters.
    Chen N; Wang S; Zhang X; Yang S
    Sci Total Environ; 2020 Oct; 740():140012. PubMed ID: 32569911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote estimation of phycocyanin concentration in inland waters based on optical classification.
    Lyu L; Song K; Wen Z; Liu G; Fang C; Shang Y; Li S; Tao H; Wang X; Li Y; Wang X
    Sci Total Environ; 2023 Nov; 899():166363. PubMed ID: 37598955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing.
    Coffer MM; Schaeffer BA; Darling JA; Urquhart EA; Salls WB
    Ecol Indic; 2020 Apr; 111():105976. PubMed ID: 34326705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters.
    Karthick M; Shanmugam P; He X
    Opt Express; 2024 Feb; 32(5):7659-7681. PubMed ID: 38439443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations.
    Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H
    Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs).
    Gómez JA; Alonso CA; García AA
    Environ Monit Assess; 2011 Oct; 181(1-4):317-34. PubMed ID: 21243424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote sensing to detect harmful algal blooms in inland waterbodies.
    Liu S; Glamore W; Tamburic B; Morrow A; Johnson F
    Sci Total Environ; 2022 Dec; 851(Pt 1):158096. PubMed ID: 35987216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source.
    Duan H; Tao M; Loiselle SA; Zhao W; Cao Z; Ma R; Tang X
    Water Res; 2017 Oct; 122():455-470. PubMed ID: 28624729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations.
    Beck R; Xu M; Zhan S; Johansen R; Liu H; Tong S; Yang B; Shu S; Wu Q; Wang S; Berling K; Murray A; Emery E; Reif M; Harwood J; Young J; Nietch C; Macke D; Martin M; Stillings G; Stumpf R; Su H; Ye Z; Huang Y
    J Great Lakes Res; 2019 Jun; 45(3):413-433. PubMed ID: 32831462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States.
    Zhang F; Lee J; Liang S; Shum CK
    Environ Health; 2015 May; 14():41. PubMed ID: 25948281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea.
    Park Y; Pyo J; Kwon YS; Cha Y; Lee H; Kang T; Cho KH
    Water Res; 2017 Dec; 126():319-328. PubMed ID: 28965034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States.
    Coffer MM; Schaeffer BA; Foreman K; Porteous A; Loftin KA; Stumpf RP; Werdell PJ; Urquhart E; Albert RJ; Darling JA
    Water Res; 2021 Aug; 201():117377. PubMed ID: 34218089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.