These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36659595)
1. The contribution of photoinduced charge-transfer enhancement to the SERS of uranyl(VI) in a uranyl-Ag Wang S; Yang S; Wu H; Jiang J; Shao L; Ren Y; Li Y; Liang C; Chu M; Wang X Sci Bull (Beijing); 2019 Mar; 64(5):315-320. PubMed ID: 36659595 [TBL] [Abstract][Full Text] [Related]
2. Photoreduced Ag Gai T; Jiang J; Wang S; Ren Y; Yang S; Qin Z; Shao L; Wu Q; Zhang J; Liao J Anal Chim Acta; 2024 Aug; 1316():342826. PubMed ID: 38969424 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive and selective determination of uranyl ions based on Ag/Ag Gai T; Jiang J; Wang S; Zhang L; Ren Y; Qin Z; Wu Q; Zhang J; Liao J Talanta; 2024 Sep; 277():126407. PubMed ID: 38878512 [TBL] [Abstract][Full Text] [Related]
4. Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(VI) ions. Wang S; Jiang J; Wu H; Jia J; Shao L; Tang H; Ren Y; Chu M; Wang X Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 180():23-28. PubMed ID: 28262580 [TBL] [Abstract][Full Text] [Related]
5. Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Bao L; Mahurin SM; Haire RG; Dai S Anal Chem; 2003 Dec; 75(23):6614-20. PubMed ID: 16465717 [TBL] [Abstract][Full Text] [Related]
6. Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. He M; Lin J; Akakuru OU; Xu X; Li Y; Cao Y; Xu Y; Wu A Sci China Life Sci; 2022 Mar; 65(3):561-571. PubMed ID: 34258713 [TBL] [Abstract][Full Text] [Related]
7. Increased O 2p State Density Enabling Significant Photoinduced Charge Transfer for Surface-Enhanced Raman Scattering of Amorphous Zn(OH) Li A; Yu J; Lin J; Chen M; Wang X; Guo L J Phys Chem Lett; 2020 Mar; 11(5):1859-1866. PubMed ID: 32068408 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
9. Metal-Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability. Yuan W; Jiao K; Yuan H; Sun H; Lim EG; Mitrovic I; Duan S; Cong S; Yong R; Li F; Song P ACS Appl Mater Interfaces; 2024 May; 16(20):26374-26385. PubMed ID: 38716706 [TBL] [Abstract][Full Text] [Related]
10. Ag Tan C; Zhang Z; Qu Y; He L Langmuir; 2017 Jun; 33(22):5345-5352. PubMed ID: 28489393 [TBL] [Abstract][Full Text] [Related]
11. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS). Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S Front Chem; 2019; 7():582. PubMed ID: 31482089 [TBL] [Abstract][Full Text] [Related]
12. Magnetic MOF Substrates for the Rapid and Sensitive Surface-Enhanced Raman Scattering Detection of Uranyl. Wang N; Du J; Li X; Ji X; Wu Y; Sun Z Anal Chem; 2023 Aug; 95(34):12956-12963. PubMed ID: 37583286 [TBL] [Abstract][Full Text] [Related]
14. Optimized electromagnetic enhancement and charge transfer in MXene/Au/Cu Zhao YX; Zheng ZX; Zhang LS; Feng JR; Ma L; Ding SJ Phys Chem Chem Phys; 2023 Jun; 25(22):15209-15218. PubMed ID: 37232126 [TBL] [Abstract][Full Text] [Related]
15. Surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering excitation profiles of Ag-2,2'-bipyridine surface complexes and of [Ru(bpy)3]2+ on Ag colloidal surfaces: manifestations of the charge-transfer resonance contributions to the overall surface enhancement of Raman scattering. Srnová-Sloufová I; Vlcková B; Snoeck TL; Stufkens DJ; Matĕjka P Inorg Chem; 2000 Aug, 7; 39(16):3551-9. PubMed ID: 11196814 [TBL] [Abstract][Full Text] [Related]
16. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Yang L; Peng Y; Yang Y; Liu J; Huang H; Yu B; Zhao J; Lu Y; Huang Z; Li Z; Lombardi JR Adv Sci (Weinh); 2019 Jun; 6(12):1900310. PubMed ID: 31380169 [TBL] [Abstract][Full Text] [Related]
17. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413 [TBL] [Abstract][Full Text] [Related]
18. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water. Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937 [TBL] [Abstract][Full Text] [Related]
19. Two-Dimensional Amorphous TiO Wang X; Shi W; Wang S; Zhao H; Lin J; Yang Z; Chen M; Guo L J Am Chem Soc; 2019 Apr; 141(14):5856-5862. PubMed ID: 30895783 [TBL] [Abstract][Full Text] [Related]
20. Surface plasmon resonance induced charge transfer effect on the Ag-ZnSe-PATP system. Chu Q; Han B; Jin Y; Guo S; Jin S; Park E; Chen L; Jung YM Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119167. PubMed ID: 33257248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]