These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36659759)

  • 1. Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners.
    Zhao D; Gutmark E; Reinecke A
    Sci Bull (Beijing); 2019 Jul; 64(13):941-952. PubMed ID: 36659759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating self-excited thermoacoustic oscillations in a liquid fuel combustor using dual perforated plates.
    Zhou H; Liu Z; Tao C; Zhou M
    J Acoust Soc Am; 2020 Sep; 148(3):1756. PubMed ID: 33003885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode.
    Guan Y; Li LKB; Ahn B; Kim KT
    Chaos; 2019 May; 29(5):053124. PubMed ID: 31154771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of thermo-acoustic instabilities in horizontal Rijke tube using pulsating radial jets.
    Deshmukh NN; Ansari A; Tajir AP; Almeida CC; Shetty AS; Danie NS; Kadam SK
    MethodsX; 2023 Dec; 11():102325. PubMed ID: 37663001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrence network analysis exploring the routes to thermoacoustic instability in a Rijke tube with inverse diffusion flame.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2021 Mar; 31(3):033117. PubMed ID: 33810714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies.
    Zhao D
    J Acoust Soc Am; 2011 Mar; 129(3):1184-92. PubMed ID: 21428482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-domain characterization of the acoustic damping of a perforated liner with bias flow.
    Zhong Z; Zhao D
    J Acoust Soc Am; 2012 Jul; 132(1):271-81. PubMed ID: 22779476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual synchronization of two flame-driven thermoacoustic oscillators: Dissipative and time-delayed coupling effects.
    Moon K; Guan Y; Li LKB; Kim KT
    Chaos; 2020 Feb; 30(2):023110. PubMed ID: 32113251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor.
    Sampath R; Mathur M; Chakravarthy SR
    Phys Rev E; 2016 Dec; 94(6-1):062209. PubMed ID: 28085437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time Series and Spectral Analysis of Thermoacoustic Oscillations for Propane-Oxyfuel Combustion in a Swirl-Stabilized, Nonpremixed Combustor.
    Talal Q; Abubakar Z; Shakeel MR; AlSwat MS; Mokheimer EMA
    ACS Omega; 2023 Oct; 8(39):36053-36064. PubMed ID: 37810688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor.
    Unni VR; Krishnan A; Manikandan R; George NB; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Jun; 28(6):063125. PubMed ID: 29960406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.
    Dutta AK; Ramachandran G; Chaudhuri S
    Phys Rev E; 2019 Mar; 99(3-1):032215. PubMed ID: 30999463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bursting and mixed mode oscillations during the transition to limit cycle oscillations in a matrix burner.
    Kasthuri P; Unni VR; Sujith RI
    Chaos; 2019 Apr; 29(4):043117. PubMed ID: 31042964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of closed-loop active control method for suppression of thermoacoustic instability using radial air micro-jets.
    Deshmukh N; Ansari A; Kumar P; George AV; Thomas FJ; George MS
    MethodsX; 2023; 10():102123. PubMed ID: 37007624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing.
    Guan Y; Murugesan M; Li LKB
    Chaos; 2018 Sep; 28(9):093109. PubMed ID: 30278637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.