These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 36659765)

  • 1. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics.
    Huh W; Lee D; Lee CH
    Adv Mater; 2020 Dec; 32(51):e2002092. PubMed ID: 32985042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Resistive Switching in 2D MXene Ti
    Zhang X; Chen H; Cheng S; Guo F; Jie W; Hao J
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44614-44621. PubMed ID: 36136123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Artificial Sensory Systems Based on Neuromorphic Devices.
    Sun F; Lu Q; Feng S; Zhang T
    ACS Nano; 2021 Mar; 15(3):3875-3899. PubMed ID: 33507725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications.
    Zhang F; Li C; Li Z; Dong L; Zhao J
    Microsyst Nanoeng; 2023; 9():16. PubMed ID: 36817330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast and Low-Power 2D Bi
    Dong Z; Hua Q; Xi J; Shi Y; Huang T; Dai X; Niu J; Wang B; Wang ZL; Hu W
    Nano Lett; 2023 May; 23(9):3842-3850. PubMed ID: 37093653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing.
    Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.
    Li Y; Zhong Y; Zhang J; Xu L; Wang Q; Sun H; Tong H; Cheng X; Miao X
    Sci Rep; 2014 May; 4():4906. PubMed ID: 24809396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances on MXene-Based Memristors for Neuromorphic Computing: A Review on Synthesis, Mechanisms, and Future Directions.
    Teixeira H; Dias C; Silva AV; Ventura J
    ACS Nano; 2024 Aug; 18(33):21685-21713. PubMed ID: 39110686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial synapses based on nanomaterials.
    Chen Y; Yu H; Gong J; Ma M; Han H; Wei H; Xu W
    Nanotechnology; 2019 Jan; 30(1):012001. PubMed ID: 30256764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems.
    Lu Q; Zhao Y; Huang L; An J; Zheng Y; Yap EH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memristors based on 2D MoSe
    Duan H; Wang D; Gou J; Guo F; Jie W; Hao J
    Nanoscale; 2023 Jun; 15(23):10089-10096. PubMed ID: 37249372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.