These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 36659916)

  • 1. Methods to mechanically perturb and characterize GUV-based minimal cell models.
    Wubshet NH; Liu AP
    Comput Struct Biotechnol J; 2023; 21():550-562. PubMed ID: 36659916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rearrangement of GUV-confined actin networks in response to micropipette aspiration.
    Wubshet NH; Young CJ; Liu AP
    Cytoskeleton (Hoboken); 2024 Aug; 81(8):310-317. PubMed ID: 38326972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of GUV mechanics via actin network architectures.
    Wubshet NH; Wu B; Veerapaneni S; Liu AP
    Biophys J; 2023 Jun; 122(11):2068-2081. PubMed ID: 36397672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps*.
    Ganzinger KA; Merino-Salomón A; García-Soriano DA; Butterfield AN; Litschel T; Siedler F; Schwille P
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21372-21376. PubMed ID: 32735732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles.
    Moghal MMR; Islam MZ; Hossain F; Saha SK; Yamazaki M
    Biophys J; 2020 Jan; 118(1):57-69. PubMed ID: 31810658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Block Copolymer Giant Unilamellar Vesicles for High-Throughput Screening.
    Heuberger L; Palivan C
    Chimia (Aarau); 2022 Apr; 76(4):350-353. PubMed ID: 38069778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Protein-free Membrane Fusion: A Giant Vesicle Study.
    Lira RB; Robinson T; Dimova R; Riske KA
    Biophys J; 2019 Jan; 116(1):79-91. PubMed ID: 30579564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering of Giant Unilamellar Vesicles Promoted by Covalent and Noncovalent Bonding of Functional Groups at Membrane-Embedded Peptides.
    Stuhr-Hansen N; Vagianou CD; Blixt O
    Bioconjug Chem; 2019 Aug; 30(8):2156-2164. PubMed ID: 31322865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles.
    van Buren L; Koenderink GH; Martinez-Torres C
    ACS Synth Biol; 2023 Jan; 12(1):120-135. PubMed ID: 36508359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes.
    Moghal MMR; Shuma ML; Islam MZ; Yamazaki M
    Methods Mol Biol; 2022; 2383():167-179. PubMed ID: 34766289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.