BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36659917)

  • 1. CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction.
    Tsukiyama S; Hasan MM; Kurata H
    Comput Struct Biotechnol J; 2023; 21():644-654. PubMed ID: 36659917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-attention PHV: Prediction of human and virus protein-protein interactions using cross-attention-based neural networks.
    Tsukiyama S; Kurata H
    Comput Struct Biotechnol J; 2022; 20():5564-5573. PubMed ID: 36249566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BERT6mA: prediction of DNA N6-methyladenine site using deep learning-based approaches.
    Tsukiyama S; Hasan MM; Deng HW; Kurata H
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35225328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes.
    Le NQK; Ho QT
    Methods; 2022 Aug; 204():199-206. PubMed ID: 34915158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species.
    Tang X; Zheng P; Li X; Wu H; Wei DQ; Liu Y; Huang G
    Methods; 2022 Aug; 204():142-150. PubMed ID: 35477057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.
    Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving DNA 6mA Site Prediction via Integrating Bidirectional Long Short-Term Memory, Convolutional Neural Network, and Self-Attention Mechanism.
    Hu J; Tang YX; Zhou Y; Li Z; Rao B; Zhang GJ
    J Chem Inf Model; 2023 Sep; 63(17):5689-5700. PubMed ID: 37603823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNN6mA: Improved DNA N6-methyladenine site prediction using Siamese network-based feature embedding.
    Yu X; Hu J; Zhang Y
    Comput Biol Med; 2023 Nov; 166():107533. PubMed ID: 37793205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mini-review: Recent advances in post-translational modification site prediction based on deep learning.
    Meng L; Chan WS; Huang L; Liu L; Chen X; Zhang W; Wang F; Cheng K; Sun H; Wong KC
    Comput Struct Biotechnol J; 2022; 20():3522-3532. PubMed ID: 35860402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 6mA-StackingCV: an improved stacking ensemble model for predicting DNA N6-methyladenine site.
    Huang G; Huang X; Luo W
    BioData Min; 2023 Nov; 16(1):34. PubMed ID: 38012796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Label Classification in Patient-Doctor Dialogues With the RoBERTa-WWM-ext + CNN (Robustly Optimized Bidirectional Encoder Representations From Transformers Pretraining Approach With Whole Word Masking Extended Combining a Convolutional Neural Network) Model: Named Entity Study.
    Sun Y; Gao D; Shen X; Li M; Nan J; Zhang W
    JMIR Med Inform; 2022 Apr; 10(4):e35606. PubMed ID: 35451969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. i6mA-Vote: Cross-Species Identification of DNA N6-Methyladenine Sites in Plant Genomes Based on Ensemble Learning With Voting.
    Teng Z; Zhao Z; Li Y; Tian Z; Guo M; Lu Q; Wang G
    Front Plant Sci; 2022; 13():845835. PubMed ID: 35237293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNNRice6mA: A Deep Learning Method for Predicting DNA N6-Methyladenine Sites in Rice Genome.
    Yu H; Dai Z
    Front Genet; 2019; 10():1071. PubMed ID: 31681441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome.
    Cai J; Xiao G; Su R
    Methods; 2022 Aug; 204():14-21. PubMed ID: 35149214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging the attention mechanism to improve the identification of DNA N6-methyladenine sites.
    Zhang Y; Liu Y; Xu J; Wang X; Peng X; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34459479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA6mA-MINT: DNA-6mA Modification Identification Neural Tool.
    Rehman MU; Chong KT
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32764497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice.
    Lv H; Dao FY; Guan ZX; Zhang D; Tan JX; Zhang Y; Chen W; Lin H
    Front Genet; 2019; 10():793. PubMed ID: 31552096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MGF6mARice: prediction of DNA N6-methyladenine sites in rice by exploiting molecular graph feature and residual block.
    Liu M; Sun ZL; Zeng Z; Lam KM
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.