These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36659918)
21. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: Evidence from transcriptomic data and renal histopathology. Jiao Y; Jiang S; Wang Y; Yu T; Zou G; Zhuo L; Li W J Diabetes Investig; 2022 May; 13(5):839-849. PubMed ID: 34932275 [TBL] [Abstract][Full Text] [Related]
22. Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways. Nazir N; Siddiqui K; Al-Qasim S; Al-Naqeb D BMC Med Genet; 2014 Oct; 15():103. PubMed ID: 25280384 [TBL] [Abstract][Full Text] [Related]
23. Integrated analysis of potential gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy. Yan Q; Zhao Z; Liu D; Li J; Pan S; Duan J; Dong J; Liu Z Front Endocrinol (Lausanne); 2022; 13():1032814. PubMed ID: 36387855 [TBL] [Abstract][Full Text] [Related]
24. An Rai B; Maurya PK; Srivastava M; Mishra P; Asif MH; Tiwari S Curr Diabetes Rev; 2024; 21(2):e100622205872. PubMed ID: 35702773 [TBL] [Abstract][Full Text] [Related]
25. Comprehensive Analysis of Fatty Acid Metabolism in Diabetic Nephropathy from the Perspective of Immune Landscapes, Diagnosis and Precise Therapy. Zhu E; Zhong M; Liang T; Liu Y; Wu K; Zhang Z; Zhao S; Guan H; Chen J; Zhang LZ; Zhang Y J Inflamm Res; 2024; 17():693-710. PubMed ID: 38332898 [TBL] [Abstract][Full Text] [Related]
26. Bioinformatics Analysis of the Mechanisms of Diabetic Nephropathy Guo M; Dai Y; Jiang L; Gao J Front Endocrinol (Lausanne); 2022; 13():934022. PubMed ID: 35909518 [TBL] [Abstract][Full Text] [Related]
27. [Bioinformatic analysis of immune-related transcription factors in diabetic kidney disease]. Liu L; Yang J; Ren J Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2024 Jun; 40(6):488-493. PubMed ID: 38952087 [TBL] [Abstract][Full Text] [Related]
28. Extracellular signal-regulated kinase is activated in podocytes from patients with diabetic nephropathy. Yamashiro A; Satoh Y; Endo S; Oshima N Hum Cell; 2024 Sep; 37(5):1553-1558. PubMed ID: 39052150 [TBL] [Abstract][Full Text] [Related]
29. Integrative analysis of potential diagnostic markers and therapeutic targets for glomerulus-associated diabetic nephropathy based on cellular senescence. Sun D; Wei S; Wang D; Zeng M; Mo Y; Li H; Liang C; Li L; Zhang JW; Wang L Front Immunol; 2023; 14():1328757. PubMed ID: 38390397 [TBL] [Abstract][Full Text] [Related]
30. Identification of key immune-related genes and immune infiltration in diabetic nephropathy based on machine learning algorithms. Sun Y; Dai W; He W IET Syst Biol; 2023 Jun; 17(3):95-106. PubMed ID: 36919187 [TBL] [Abstract][Full Text] [Related]
31. Identification of pyroptosis-related genes and potential drugs in diabetic nephropathy. Yan M; Li W; Wei R; Li S; Liu Y; Huang Y; Zhang Y; Lu Z; Lu Q J Transl Med; 2023 Jul; 21(1):490. PubMed ID: 37480090 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns. Hur J; O'Brien PD; Nair V; Hinder LM; McGregor BA; Jagadish HV; Kretzler M; Brosius FC; Feldman EL Diabetologia; 2016 Jun; 59(6):1297-306. PubMed ID: 27000313 [TBL] [Abstract][Full Text] [Related]
33. The Prevalence and Management of Diabetic Nephropathy in Asia. Tomino Y; Gohda T Kidney Dis (Basel); 2015 May; 1(1):52-60. PubMed ID: 27536665 [TBL] [Abstract][Full Text] [Related]
34. Identification of the molecular mechanism and candidate markers for diabetic nephropathy. Chen C; Liu L; Luo J Ann Transl Med; 2022 Nov; 10(22):1248. PubMed ID: 36544633 [TBL] [Abstract][Full Text] [Related]
35. The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy. Zhao T; Cheng F; Zhan D; Li J; Zheng C; Lu Y; Qin W; Liu Z J Proteome Res; 2023 Jun; 22(6):1779-1789. PubMed ID: 37191251 [TBL] [Abstract][Full Text] [Related]
36. Identification and Validation of Glomeruli Cellular Senescence-Related Genes in Diabetic Nephropathy by Multiomics. Tang C; Yang C; Wang P; Li L; Lin Y; Yi Q; Tang F; Liu L; Zhou W; Liu D; Zhang L; Yuan X Adv Biol (Weinh); 2024 Feb; 8(2):e2300453. PubMed ID: 37957539 [TBL] [Abstract][Full Text] [Related]
37. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Wang X; Gao L; Lin H; Song J; Wang J; Yin Y; Zhao J; Xu X; Li Z; Li L Eur J Pharmacol; 2018 Apr; 824():170-178. PubMed ID: 29444469 [TBL] [Abstract][Full Text] [Related]
38. Novel insights into the disease transcriptome of human diabetic glomeruli and tubulointerstitium. Levin A; Reznichenko A; Witasp A; Liu P; Greasley PJ; Sorrentino A; Blondal T; Zambrano S; Nordström J; Bruchfeld A; Barany P; Ebefors K; Erlandsson F; Patrakka J; Stenvinkel P; Nyström J; Wernerson A Nephrol Dial Transplant; 2020 Dec; 35(12):2059-2072. PubMed ID: 32853351 [TBL] [Abstract][Full Text] [Related]
39. Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: a candidate mechanism in the progression of diabetic nephropathy. Pontrelli P; Oranger A; Barozzino M; Divella C; Conserva F; Fiore MG; Rossi R; Papale M; Castellano G; Simone S; Laviola L; Giorgino F; Piscitelli D; Gallone A; Gesualdo L J Mol Med (Berl); 2018 Jul; 96(7):645-659. PubMed ID: 29806072 [TBL] [Abstract][Full Text] [Related]
40. Integrative transcriptome analysis reveals TEKT2 and PIAS2 involvement in diabetic nephropathy. Li Y; Lin H; Shu S; Sun Y; Lai W; Chen W; Hu Z; Peng H FASEB J; 2022 Nov; 36(11):e22592. PubMed ID: 36251411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]