BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3666020)

  • 21. Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat.
    Sherman WR; Leavitt AL; Honchar MP; Hallcher LM; Phillips BE
    J Neurochem; 1981 Jun; 36(6):1947-51. PubMed ID: 6264039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations.
    Batty IH; Letcher AJ; Nahorski SR
    Biochem J; 1989 Feb; 258(1):23-32. PubMed ID: 2930510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dihydropyridine-sensitive Ca2+ channels and inositol phospholipid metabolism in ethanol physical dependence.
    Hudspith MJ; Brennan CH; Charles S; Littleton JM
    Ann N Y Acad Sci; 1987; 492():156-70. PubMed ID: 2440359
    [No Abstract]   [Full Text] [Related]  

  • 24. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices.
    Batty IR; Nahorski SR; Irvine RF
    Biochem J; 1985 Nov; 232(1):211-5. PubMed ID: 4084229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute and chronic lithium treatments influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex.
    Kendall DA; Nahorski SR
    J Pharmacol Exp Ther; 1987 Jun; 241(3):1023-7. PubMed ID: 3037063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adenosine receptor agonists inhibit inositol phosphate accumulation in rat striatal slices.
    Petcoff DW; Cooper DM
    Eur J Pharmacol; 1987 Jun; 137(2-3):269-71. PubMed ID: 3609145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of lithium ion in measurement of stimulated pituitary inositol phospholipid turnover.
    Huckle WR; Conn PM
    Methods Enzymol; 1987; 141():149-55. PubMed ID: 3110551
    [No Abstract]   [Full Text] [Related]  

  • 28. Quantitation of the lithium-sensitive component of the muscarinic receptor-stimulated inositol 1,3,4,5-tetrakisphosphate response in rat cerebral cortex.
    Jenkinson S; Patel N; Nahorski SR; Challiss RA
    Biochem Soc Trans; 1992 May; 20(2):137S. PubMed ID: 1327901
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of monovalent ions upon G proteins coupling muscarinic receptors to phosphoinositide hydrolysis in the rat cerebral cortex.
    Tiger G; Björklund PE; Cowburn RF; Garlind A; O'Neill C; Wiehager B; Fowler CJ
    Eur J Pharmacol; 1990 Jan; 188(1):51-62. PubMed ID: 2155122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholinergic- and adrenergic-stimulated inositide hydrolysis in brain: interaction, regional distribution, and coupling mechanisms.
    Gonzales RA; Crews FT
    J Neurochem; 1985 Oct; 45(4):1076-84. PubMed ID: 4031879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonist effects of the enantiomers of 3-PPP towards alpha 1-adrenoceptors coupled to inositol phospholipid breakdown in the rat cerebral cortex.
    Fowler CJ; Thorell G
    Pharmacol Toxicol; 1987 May; 60(5):389-92. PubMed ID: 3039482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluoride inhibits agonist-induced formation of inositol phosphates in rat cortex.
    Godfrey PP; Watson SP
    Biochem Biophys Res Commun; 1988 Sep; 155(2):664-9. PubMed ID: 3138993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noradrenaline-stimulated inositol phospholipid breakdown in rat dorsal lateral geniculate nucleus neurones.
    Kemp JA; Downes CP
    Brain Res; 1986 Apr; 371(2):314-8. PubMed ID: 3008945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The possible involvement of changes in phosphoinositol turnover in the responses of renal sodium transport to noradrenaline.
    Plevin RJ; Parsons BJ; Butcher P; Poat JA
    Biochem Pharmacol; 1988 Jun; 37(11):2121-4. PubMed ID: 2837226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rat cerebral cortex.
    Godfrey PP; Wilkins CJ; Tyler W; Watson SP
    Br J Pharmacol; 1988 Sep; 95(1):131-8. PubMed ID: 2464383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium amplifies inhibitions of inositol phospholipid hydrolysis in mammalian brain slices.
    Kendall DA; Whitworth P
    Br J Pharmacol; 1990 Aug; 100(4):723-8. PubMed ID: 2207495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dephosphorylation of inositol 1,4-bisphosphate to inositol in liver and brain involves two distinct Li+-sensitive enzymes and proceeds via inositol 4-phosphate.
    Ragan CI; Watling KJ; Gee NS; Aspley S; Jackson RG; Reid GG; Baker R; Billington DC; Barnaby RJ; Leeson PD
    Biochem J; 1988 Jan; 249(1):143-8. PubMed ID: 2829849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulations of inositol phosphates and cyclic AMP in brain slices: synergistic interactions of histamine and 2-chloroadenosine.
    Hollingsworth EB; De la Cruz RA; Daly JW
    Eur J Pharmacol; 1986 Mar; 122(1):45-50. PubMed ID: 3007178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuropeptide Y stimulates inositol phospholipid hydrolysis in rat brain miniprisms.
    Hinson J; Rauh C; Coupet J
    Brain Res; 1988 Apr; 446(2):379-82. PubMed ID: 3370495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of selective noradrenergic lesions upon the stimulation by noradrenaline of inositol phospholipid breakdown in rat hippocampal miniprisms.
    Fowler CJ; Magnusson O; Mohammed AK; Danysz W; Archer T
    Eur J Pharmacol; 1986 Apr; 123(3):401-7. PubMed ID: 3087760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.