These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36660293)

  • 1. Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook.
    Kunwar P; Ransbottom MJ; Soman P
    3D Print Addit Manuf; 2022 Oct; 9(5):435-449. PubMed ID: 36660293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution 3D Printing of Stretchable Hydrogel Structures Using Optical Projection Lithography.
    Kunwar P; Jannini AVS; Xiong Z; Ransbottom MJ; Perkins JS; Henderson JH; Hasenwinkel JM; Soman P
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1640-1649. PubMed ID: 31833757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrusion printing of ionic-covalent entanglement hydrogels with high toughness.
    Bakarich SE; Panhuis MIH; Beirne S; Wallace GG; Spinks GM
    J Mater Chem B; 2013 Oct; 1(38):4939-4946. PubMed ID: 32261083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of an
    Liu W; Erol O; Gracias DH
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33267-33275. PubMed ID: 32644785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Network Tough Hydrogels: A Brief Review on Achievements and Challenges.
    Xin H
    Gels; 2022 Apr; 8(4):. PubMed ID: 35448148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness.
    Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
    Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X
    Adv Mater; 2015 Jul; 27(27):4034. PubMed ID: 26172844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-performance GelMA-GelMA homogeneous double-network hydrogel assisted by 3D printing.
    Dong Y; Zhang M; Han D; Deng Z; Cao X; Tian J; Ye Q
    J Mater Chem B; 2022 May; 10(20):3906-3915. PubMed ID: 35471408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design.
    Simmons DW; Schuftan DR; Ramahdita G; Huebsch N
    ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamentals of double network hydrogels.
    Chen Q; Chen H; Zhu L; Zheng J
    J Mater Chem B; 2015 May; 3(18):3654-3676. PubMed ID: 32262840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications.
    Wang XQ; Xie AQ; Cao P; Yang J; Ong WL; Zhang KQ; Ho GW
    Adv Mater; 2024 Jun; 36(23):e2309952. PubMed ID: 38389497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels.
    Yin H; King DR; Sun TL; Saruwatari Y; Nakajima T; Kurokawa T; Gong JP
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50068-50076. PubMed ID: 33085900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoplastic PCL-
    Güney A; Gardiner C; McCormack A; Malda J; Grijpma DW
    Bioengineering (Basel); 2018 Nov; 5(4):. PubMed ID: 30441879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states.
    Chen H; Yang F; Hu R; Zhang M; Ren B; Gong X; Ma J; Jiang B; Chen Q; Zheng J
    J Mater Chem B; 2016 Sep; 4(35):5814-5824. PubMed ID: 32263754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.