These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36660296)

  • 21. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering.
    Gwiazda M; Kumar S; Świeszkowski W; Ivanovski S; Vaquette C
    J Mech Behav Biomed Mater; 2020 Apr; 104():103631. PubMed ID: 32174392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Attachment of Primary Vaginal Fibroblasts to Absorbable and Nonabsorbable Implant Materials Coated With Platelet-Rich Plasma: Potential Application in Pelvic Organ Prolapse Surgery.
    Medel S; Alarab M; Kufaishi H; Drutz H; Shynlova O
    Female Pelvic Med Reconstr Surg; 2015; 21(4):190-7. PubMed ID: 25900058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds.
    Chen Z; Liu Y; Huang J; Hao M; Hu X; Qian X; Fan J; Yang H; Yang B
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices: A feasibility study.
    Vashaghian M; Ruiz-Zapata AM; Kerkhof MH; Zandieh-Doulabi B; Werner A; Roovers JP; Smit TH
    Neurourol Urodyn; 2017 Mar; 36(3):565-573. PubMed ID: 26840206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transvaginal treatment of anterior and apical genital prolapses using an Ultra lightweight mesh: Restorelle
    Ferry P; Bertherat P; Gauthier A; Villet R; Del Piano F; Hamid D; Fernandez H; Broux PL; Salet-Lizée D; Vincens E; Ntshaykolo P; Debodinance P; Pocholle P; Thirouard Y; de Tayrac R
    J Gynecol Obstet Hum Reprod; 2018 Nov; 47(9):443-449. PubMed ID: 29920380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surgical management of pelvic organ prolapse in women.
    Maher C; Feiner B; Baessler K; Schmid C
    Cochrane Database Syst Rev; 2013 Apr; (4):CD004014. PubMed ID: 23633316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP.
    Mangir N; Aldemir Dikici B; Chapple CR; MacNeil S
    Nat Rev Urol; 2019 Nov; 16(11):675-689. PubMed ID: 31548731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Position of Ibero-American Society of Neurourology and UroGynecology (SINUG) on the use of vaginal meshes in pelvic organ prolapse.
    Martín-Martínez A; Müller-Arteaga C; Blasco-Hernández P; Padilla-Fernández B; Martínez-García R; Errando-Smet C; Vicente-Palacio E; Cruz F; Castro-Díaz D; López-Fando L; Ros-Cerro C; Arlandis-Guzmán S; Espuña-Pons M
    Neurourol Urodyn; 2020 Mar; 39(3):1020-1025. PubMed ID: 32068303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair.
    Todros S; Pavan PG; Natali AN
    J Mech Behav Biomed Mater; 2015 Mar; 55():271-285. PubMed ID: 26615384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oestradiol-releasing Biodegradable Mesh Stimulates Collagen Production and Angiogenesis: An Approach to Improving Biomaterial Integration in Pelvic Floor Repair.
    Mangır N; Hillary CJ; Chapple CR; MacNeil S
    Eur Urol Focus; 2019 Mar; 5(2):280-289. PubMed ID: 28753895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of clinical and newly fabricated meshes for pelvic organ prolapse repair.
    Edwards SL; Werkmeister JA; Rosamilia A; Ramshaw JA; White JF; Gargett CE
    J Mech Behav Biomed Mater; 2013 Jul; 23():53-61. PubMed ID: 23651550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct writing by way of melt electrospinning.
    Brown TD; Dalton PD; Hutmacher DW
    Adv Mater; 2011 Dec; 23(47):5651-7. PubMed ID: 22095922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of polymeric meshes for pelvic organ prolapse: Current concepts, challenges, and future perspectives.
    Mancuso E; Downey C; Doxford-Hook E; Bryant MG; Culmer P
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):771-789. PubMed ID: 31219676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging Nano/Micro-Structured Degradable Polymeric Meshes for Pelvic Floor Reconstruction.
    Paul K; Darzi S; Werkmeister JA; Gargett CE; Mukherjee S
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32517067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo documentation of shape and position changes of MRI-visible mesh placed in rectovaginal septum.
    Iva U; Nikhil S; Geertje C; Alice T; Rynkevic R; Lucie H; Andrew F; Jan D
    J Mech Behav Biomed Mater; 2017 Nov; 75():379-389. PubMed ID: 28803112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tensile Properties of Composite Reinforced with Three-Dimensional Printed Fibers.
    Agarwal K; Sahay R; Baji A
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32397622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue - engineering as an adjunct to pelvic reconstructive surgery.
    Jangö H
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gentle cyclic straining of human fibroblasts on electrospun scaffolds enhances their regenerative potential.
    Vashaghian M; Diedrich CM; Zandieh-Doulabi B; Werner A; Smit TH; Roovers JP
    Acta Biomater; 2019 Jan; 84():159-168. PubMed ID: 30471477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment.
    Vyas C; Ates G; Aslan E; Hart J; Huang B; Bartolo P
    3D Print Addit Manuf; 2020 Jun; 7(3):105-113. PubMed ID: 32851115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melt electrospinning of biodegradable polyurethane scaffolds.
    Karchin A; Simonovsky FI; Ratner BD; Sanders JE
    Acta Biomater; 2011 Sep; 7(9):3277-84. PubMed ID: 21640853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.