These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36660296)

  • 41. Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering.
    Chen H; Malheiro ABFB; van Blitterswijk C; Mota C; Wieringa PA; Moroni L
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38187-38200. PubMed ID: 29043781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode.
    Brown TD; Slotosch A; Thibaudeau L; Taubenberger A; Loessner D; Vaquette C; Dalton PD; Hutmacher DW
    Biointerphases; 2012 Dec; 7(1-4):13. PubMed ID: 22589056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pelvic organ prolapse meshes: Can they preserve the physiological behavior?
    Morch A; Doucède G; Lecomte-Grosbras P; Brieu M; Rubod C; Cosson M
    J Mech Behav Biomed Mater; 2021 Aug; 120():104569. PubMed ID: 34058600
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode.
    Farrugia BL; Brown TD; Upton Z; Hutmacher DW; Dalton PD; Dargaville TR
    Biofabrication; 2013 Jun; 5(2):025001. PubMed ID: 23443534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications.
    Adhikari U; An X; Rijal N; Hopkins T; Khanal S; Chavez T; Tatu R; Sankar J; Little KJ; Hom DB; Bhattarai N; Pixley SK
    Acta Biomater; 2019 Oct; 98():215-234. PubMed ID: 31059833
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combining 3D-Printing and Electrospinning to Manufacture Biomimetic Heart Valve Leaflets.
    Freystetter B; Grab M; Grefen L; Bischof L; Isert L; Mela P; Bezuidenhout D; Hagl C; Thierfelder N
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Varying degrees of nonlinear mechanical behavior arising from geometric differences of urogynecological meshes.
    Feola A; Pal S; Moalli P; Maiti S; Abramowitch S
    J Biomech; 2014 Aug; 47(11):2584-9. PubMed ID: 25011619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Are Two Meshes Better than One in Sacrocolpopexy for Pelvic Organ Prolapse? Comparison of Single Anterior versus Anterior and Posterior Vaginal Mesh Procedures.
    d'Altilia N; Mancini V; Falagario U; Chirico M; Illiano E; Balzarro M; Annese P; Busetto GM; Bettocchi C; Cormio L; Sanguedolce F; Schiavina R; Brunocilla E; Costantini E; Carrieri G
    Urol Int; 2022; 106(3):282-290. PubMed ID: 34839298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of prolapse mesh on vaginal smooth muscle structure and function.
    Jallah Z; Liang R; Feola A; Barone W; Palcsey S; Abramowitch SD; Yoshimura N; Moalli P
    BJOG; 2016 Jun; 123(7):1076-85. PubMed ID: 26301457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source?
    Roman S; Mangera A; Osman NI; Bullock AJ; Chapple CR; MacNeil S
    Neurourol Urodyn; 2014 Jun; 33(5):531-7. PubMed ID: 23868812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet.
    Navaneethan B; Chou CF
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42841-42851. PubMed ID: 36106830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An approach to evaluating and benchmarking the mechanical behavior of a surgical mesh prototype designed for the repair of abdominal wall defects.
    García-García C; Carrascal-Morillo MT; Castell Gómez JT; Bernal Guerrero C; García Prada JC
    J Mech Behav Biomed Mater; 2022 Jan; 125():104909. PubMed ID: 34736025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.
    Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS
    Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Absorbable Electrospun Poly-4-hydroxybutyrate Scaffolds as a Potential Solution for Pelvic Organ Prolapse Surgery.
    Verhorstert K; Gudde A; Weitsz C; Bezuidenhout D; Roovers JP; Guler Z
    ACS Appl Bio Mater; 2022 Nov; 5(11):5270-5280. PubMed ID: 36315937
    [TBL] [Abstract][Full Text] [Related]  

  • 55. To mesh or not to mesh: a review of pelvic organ reconstructive surgery.
    Dällenbach P
    Int J Womens Health; 2015; 7():331-43. PubMed ID: 25848324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment:
    Lai C; Zhang SJ; Chen XC; Sheng LY; Qi TW; Yan LP
    Mater Today Bio; 2021 Sep; 12():100172. PubMed ID: 34901822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Development of better tolerated prosthetic materials: applications in gynecological surgery].
    Debodinance P; Delporte P; Engrand JB; Boulogne M
    J Gynecol Obstet Biol Reprod (Paris); 2002 Oct; 31(6):527-40. PubMed ID: 12407323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration.
    Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of laparoscopic sacrocolpopexy and total vaginal mesh procedure using lightweight polypropylene meshes for prolapse repair.
    Liu CK; Tsai CP; Chou MM; Shen PS; Chen GD; Hung YC; Hung MJ
    Taiwan J Obstet Gynecol; 2014 Dec; 53(4):552-8. PubMed ID: 25510700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.