These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36660442)

  • 1. Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected by
    Vélez S; Ariza-Sentís M; Valente J
    Data Brief; 2023 Feb; 46():108876. PubMed ID: 36660442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dataset of unmanned aerial vehicle multispectral images acquired over a field to identify nitrogen requirements.
    Fonseka CLIS; Halloluwa T; Hewagamage KP; Rathnayake U; Bandara RMUS
    Data Brief; 2024 Jun; 54():110479. PubMed ID: 38764456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation.
    Buunk T; Vélez S; Ariza-Sentís M; Valente J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dataset on UAV RGB videos acquired over a vineyard including bunch labels for object detection and tracking.
    Ariza-Sentís M; Vélez S; Valente J
    Data Brief; 2023 Feb; 46():108848. PubMed ID: 36619256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EscaYard: Precision viticulture multimodal dataset of vineyards affected by Esca disease consisting of geotagged smartphone images, phytosanitary status, UAV 3D point clouds and Orthomosaics.
    Vélez S; Ariza-Sentís M; Valente J
    Data Brief; 2024 Jun; 54():110497. PubMed ID: 38774243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VineLiDAR: High-resolution UAV-LiDAR vineyard dataset acquired over two years in northern Spain.
    Vélez S; Ariza-Sentís M; Valente J
    Data Brief; 2023 Dec; 51():109686. PubMed ID: 37915834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image dataset acquired from an unmanned aerial vehicle over an experimental site within El Soldado estuary in Guaymas, Sonora, México.
    Encinas-Lara MS; Méndez-Barroso LA; Yépez EA
    Data Brief; 2020 Jun; 30():105425. PubMed ID: 32280736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery.
    Matese A; Di Gennaro SF; Orlandi G; Gatti M; Poni S
    Front Plant Sci; 2022; 13():898722. PubMed ID: 35769294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Multiple UAV Collaborative Driving Systems for Improving Field Phenotyping.
    Lee HS; Shin BS; Thomasson JA; Wang T; Zhang Z; Han X
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution multispectral and RGB dataset from UAV surveys of ten cocoa agroforestry typologies in Côte d'Ivoire.
    Lammoglia SK; Akpa YL; Danumah JH; Brou YLA; Kassi JN
    Data Brief; 2024 Aug; 55():110664. PubMed ID: 39040558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi temporal multispectral UAV remote sensing allows for yield assessment across European wheat varieties already before flowering.
    Camenzind MP; Yu K
    Front Plant Sci; 2023; 14():1214931. PubMed ID: 38235203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dataset of 3D computer models of Late Miocene Mount Messenger Formation outcrops in New Zealand, built with UAV drones.
    Kamaruzaman EH; La Croix AD; Kamp PJJ
    Data Brief; 2024 Feb; 52():110035. PubMed ID: 38293575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.
    Ortega-Terol D; Hernandez-Lopez D; Ballesteros R; Gonzalez-Aguilera D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping multispectral Digital Images using a Cloud Computing software: applications from UAV images.
    Saura JR; Reyes-Menendez A; Palos-Sanchez P
    Heliyon; 2019 Feb; 5(2):e01277. PubMed ID: 30891516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispectral remote sensing for accurate acquisition of rice phenotypes: Impacts of radiometric calibration and unmanned aerial vehicle flying altitudes.
    Luo S; Jiang X; Yang K; Li Y; Fang S
    Front Plant Sci; 2022; 13():958106. PubMed ID: 36035659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Remote Sensing Methods for Plant Heights in Agricultural Fields Using Unmanned Aerial Vehicle-Based Structure From Motion.
    Fujiwara R; Kikawada T; Sato H; Akiyama Y
    Front Plant Sci; 2022; 13():886804. PubMed ID: 35812919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges.
    Fernández-Guisuraga JM; Sanz-Ablanedo E; Suárez-Seoane S; Calvo L
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Karst vegetation coverage detection using UAV multispectral vegetation indices and machine learning algorithm.
    Pan W; Wang X; Sun Y; Wang J; Li Y; Li S
    Plant Methods; 2023 Jan; 19(1):7. PubMed ID: 36691062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.