BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 36660587)

  • 1. The Applications and Challenges of the Development of
    Johnson A; Reimer S; Childres R; Cupp G; Kohs TCL; McCarty OJT; Kang YA
    Cell Mol Bioeng; 2023 Feb; 16(1):3-21. PubMed ID: 36660587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip modeling of tumor evolution: Advances, challenges and opportunities.
    Li C; Holman JB; Shi Z; Qiu B; Ding W
    Mater Today Bio; 2023 Aug; 21():100724. PubMed ID: 37483380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment.
    Ravi K; Manoharan TJM; Wang KC; Pockaj B; Nikkhah M
    Biomaterials; 2024 Mar; 305():122428. PubMed ID: 38147743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organ-on-Chip platforms to study tumor evolution and chemosensitivity.
    Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
    Zhang J; Tavakoli H; Ma L; Li X; Han L; Li X
    Adv Drug Deliv Rev; 2022 Aug; 187():114365. PubMed ID: 35667465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment.
    Young EW
    Integr Biol (Camb); 2013 Sep; 5(9):1096-109. PubMed ID: 23799587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels.
    Katz RR; West JL
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment.
    Kumar V; Varghese S
    Adv Healthc Mater; 2019 Feb; 8(4):e1801198. PubMed ID: 30516355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness.
    Shah L; Latif A; Williams KJ; Tirella A
    Acta Biomater; 2022 Oct; 152():273-289. PubMed ID: 36087866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor microenvironment signaling and therapeutics in cancer progression.
    Goenka A; Khan F; Verma B; Sinha P; Dmello CC; Jogalekar MP; Gangadaran P; Ahn BC
    Cancer Commun (Lond); 2023 May; 43(5):525-561. PubMed ID: 37005490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors.
    Calejo I; Heinrich MA; Zambito G; Mezzanotte L; Prakash J; Moreira Teixeira L
    Adv Exp Med Biol; 2022; 1379():171-203. PubMed ID: 35760992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
    Huang YL; Segall JE; Wu M
    Lab Chip; 2017 Sep; 17(19):3221-3233. PubMed ID: 28805874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery.
    Wu Y; Zhao Y; Zhou Y; Islam K; Liu Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15152-15161. PubMed ID: 36920885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models.
    Ringquist R; Ghoshal D; Jain R; Roy K
    Adv Drug Deliv Rev; 2021 Dec; 179():114003. PubMed ID: 34653533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building Blood Vessel Chips with Enhanced Physiological Relevance.
    Mu X; Gerhard-Herman MD; Zhang YS
    Adv Mater Technol; 2023 Apr; 8(7):. PubMed ID: 37693798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer-on-chip models for metastasis: importance of the tumor microenvironment.
    Jouybar M; de Winde CM; Wolf K; Friedl P; Mebius RE; den Toonder JMJ
    Trends Biotechnol; 2024 Apr; 42(4):431-448. PubMed ID: 37914546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment.
    Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S
    PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Jan; ():e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.