BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3666074)

  • 1. Proteins of fast axonal transport in regenerating rat sciatic sensory axons: a conditioning lesion does not amplify the characteristic response to axotomy.
    Redshaw JD; Bisby MA
    Exp Neurol; 1987 Nov; 98(2):212-21. PubMed ID: 3666074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal transport in the central axon of sensory neurons during regeneration of their peripheral axon.
    Bisby MA
    Neurosci Lett; 1981 Jan; 21(1):7-11. PubMed ID: 6163115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of axonal outgrowth in rat sciatic nerve at one week after axotomy.
    Jacob JM; McQuarrie IG
    J Neurobiol; 1993 Mar; 24(3):356-67. PubMed ID: 8492112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the conditioning lesion effect in rat sciatic motor axons after superimposition of conditioning and test lesions.
    Bisby MA
    Exp Neurol; 1985 Nov; 90(2):385-94. PubMed ID: 4054290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth cones of regenerating adult sciatic sensory axons release axonally transported proteins.
    Remgård P; Edbladh M; Ekström PA; Edström A
    Brain Res; 1992 Feb; 572(1-2):139-45. PubMed ID: 1611508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat.
    Tetzlaff W; Zwiers H; Lederis K; Cassar L; Bisby MA
    J Neurosci; 1989 Apr; 9(4):1303-13. PubMed ID: 2703878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration.
    Verma P; Chierzi S; Codd AM; Campbell DS; Meyer RL; Holt CE; Fawcett JW
    J Neurosci; 2005 Jan; 25(2):331-42. PubMed ID: 15647476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural protein transport in elongating motor axons after sciatic nerve crush. Effect of a conditioning lesion.
    McQuarrie IG
    Neurochem Pathol; 1986 Dec; 5(3):153-64. PubMed ID: 2442681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons.
    Oblinger MM; Lasek RJ
    J Neurosci; 1984 Jul; 4(7):1736-44. PubMed ID: 6204020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a conditioning lesion on bullfrog sciatic nerve regeneration: analysis of fast axonally transported proteins.
    Perry GW; Krayanek SR; Wilson DL
    Brain Res; 1987 Oct; 423(1-2):1-12. PubMed ID: 2445444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons.
    Zheng JQ; Kelly TK; Chang B; Ryazantsev S; Rajasekaran AK; Martin KC; Twiss JL
    J Neurosci; 2001 Dec; 21(23):9291-303. PubMed ID: 11717363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide neuropathy: changes in the composition of proteins of fast axonal transport resemble those observed in regenerating axons.
    Bisby MA; Redshaw JD
    J Neurochem; 1987 Mar; 48(3):924-8. PubMed ID: 2433402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased regeneration rate in peripheral nerve axons following double lesions: enhancement of the conditioning lesion phenomenon.
    Bisby MA; Pollock B
    J Neurobiol; 1983 Nov; 14(6):467-72. PubMed ID: 6644287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NGF receptor-mediated reduction in axonal NGF uptake and retrograde transport following sciatic nerve injury and during regeneration.
    Raivich G; Hellweg R; Kreutzberg GW
    Neuron; 1991 Jul; 7(1):151-64. PubMed ID: 1648938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons.
    Ma D; Connors T; Nothias F; Fischer I
    Neuroscience; 2000; 99(1):157-70. PubMed ID: 10924960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of the rat sciatic nerve after different conditioning lesions: effects of the conditioning interval.
    Arntz C; Kanje M; Lundborg G
    Microsurgery; 1989; 10(2):118-21. PubMed ID: 2770510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury.
    Curtis R; Adryan KM; Zhu Y; Harkness PJ; Lindsay RM; DiStefano PS
    Nature; 1993 Sep; 365(6443):253-5. PubMed ID: 8371780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The increase in B-50/GAP-43 in regenerating rat sciatic nerve occurs predominantly in unmyelinated axon shafts: a quantitative ultrastructural study.
    Verkade P; Oestreicher AB; Verkleij AJ; Gispen WH
    J Comp Neurol; 1995 Jun; 356(3):433-43. PubMed ID: 7642804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.
    MacLennan AJ; Devlin BK; Neitzel KL; McLaurin DL; Anderson KJ; Lee N
    Neuroscience; 1999; 91(4):1401-13. PubMed ID: 10391446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAP 43-like immunoreactivity in normal adult rat sciatic nerve, spinal cord, and motoneurons: axonal transport and effect of spinal cord transection.
    Li JY; Kling-Petersen A; Dahlström A
    Neuroscience; 1993 Dec; 57(3):759-76. PubMed ID: 8309535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.