These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36660899)

  • 1. Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO
    Yoshiyama Y; Hosokawa S; Haneda M; Morishita M; Asakura H; Teramura K; Tanaka T
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5293-5300. PubMed ID: 36660899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NO
    Yoshiyama Y; Hosokawa S; Tamai K; Kajino T; Yoto H; Asakura H; Teramura K; Tanaka T
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Aspects of Doped CeO
    Polychronopoulou K; AlKhoori AA; Efstathiou AM; Jaoude MA; Damaskinos CM; Baker MA; Almutawa A; Anjum DH; Vasiliades MA; Belabbes A; Vega LF; Zedan AF; Hinder SJ
    ACS Appl Mater Interfaces; 2021 May; 13(19):22391-22415. PubMed ID: 33834768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO
    Zhang T; Zheng P; Gao J; Liu X; Ji Y; Tian J; Zou Y; Sun Z; Hu Q; Chen G; Chen W; Liu X; Zhong Z; Xu G; Zhu T; Su F
    Nat Commun; 2024 Aug; 15(1):6827. PubMed ID: 39122681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Activation of Molecular Oxygen and Surface Lattice Oxygen in Single Atom Cu
    Fang Y; Zhang Q; Zhang H; Li X; Chen W; Xu J; Shen H; Yang J; Pan C; Zhu Y; Wang J; Luo Z; Wang L; Bai X; Song F; Zhang L; Guo Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212273. PubMed ID: 36196008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the dynamic evolution of lattice oxygen on exsolved-Mn
    Wang X; Yang Q; Li X; Li Z; Gao C; Zhang H; Chu X; Redshaw C; Shi S; Wu YA; Ma Y; Peng Y; Li J; Feng S
    Nat Commun; 2024 Sep; 15(1):7613. PubMed ID: 39223132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M
    Yang T; Fukuda R; Hosokawa S; Tanaka T; Sakaki S; Ehara M
    ChemCatChem; 2017 Apr; 9(7):1222-1229. PubMed ID: 28515795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting catalytic stability for VOCs removal by constructing PtCu alloy structure with superior oxygen activation behavior.
    Feng Y; Wei L; Wang Z; Liu Y; Dai H; Wang C; Hsi HC; Duan E; Peng Y; Deng J
    J Hazard Mater; 2022 Oct; 439():129612. PubMed ID: 35872456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO
    Tamai K; Hosokawa S; Kato K; Asakura H; Teramura K; Tanaka T
    Phys Chem Chem Phys; 2020 Nov; 22(42):24181-24190. PubMed ID: 33000816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced CH
    Li D; Li K; Xu R; Zhu X; Wei Y; Tian D; Cheng X; Wang H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19227-19241. PubMed ID: 31067022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the effect of manganese substitution on mesoporous hollow spinel cobalt oxides for catalytic oxidation of toluene.
    Liu P; Liao Y; Li J; Chen L; Fu M; Wu P; Zhu R; Liang X; Wu T; Ye D
    J Colloid Interface Sci; 2021 Jul; 594():713-726. PubMed ID: 33794399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activating Surface Lattice Oxygen of a Cu/Zn
    Zeng M; Wang X; Yang Q; Chu X; Chen Z; Li Z; Redshaw C; Wang C; Peng Y; Wang N; Zhu Y; Wu YA
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9882-9890. PubMed ID: 35142210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation.
    Ni C; Hou J; Li L; Li Y; Wang M; Yin H; Tan W
    Chemosphere; 2020 Jul; 250():126211. PubMed ID: 32113097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of CO Oxidation and CH
    Farhang Y; Taheri-Nassaj E; Rezaei M
    Langmuir; 2023 Nov; 39(44):15465-15473. PubMed ID: 37882466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature catalytic conversion of carbon monoxide by the application of novel perovskite catalysts.
    Dey S; Mehta NS
    Sci One Health; 2022 Nov; 1():100002. PubMed ID: 39076598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Computational Insights into the Catalytic Mechanism of Y
    Kajino T; Sugimoto R; Ueda T; Fukuura S; Yumura T; Haneda M; Hosokawa S
    Inorg Chem; 2024 Jun; 63(24):10980-10986. PubMed ID: 38815988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO Oxidation at Low Temperatures over the Au Cluster Supported on Crystalline Silicotitanate.
    Muraoka M; Miyatani T; Sembuku A; Ishida T; Murayama T; Kubota Y; Inagaki S
    ACS Omega; 2024 Oct; 9(40):41696-41702. PubMed ID: 39398179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of Mars-Van-Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni-Based Catalysts.
    Ferreira de Araújo J; Dionigi F; Merzdorf T; Oh HS; Strasser P
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):14981-14988. PubMed ID: 33830603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.