These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36661069)

  • 1. Combining an Artificial Gastrocnemius and Powered Ankle Prosthesis: Effects on Transtibial Prosthesis User Gait.
    Ziemnicki DM; McDonald KA; Wolf DN; Molitor SL; Egolf JB; Gupta M; Zelik KE
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36661069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series.
    Elery T; Rezazadeh S; Reznick E; Gray L; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2944-2954. PubMed ID: 33232241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of powered prostheses on user perspectives, metabolics, and activity: a randomized crossover trial.
    Kim J; Wensman J; Colabianchi N; Gates DH
    J Neuroeng Rehabil; 2021 Mar; 18(1):49. PubMed ID: 33726802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
    Russell Esposito E; Aldridge Whitehead JM; Wilken JM
    Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.
    Quesada RE; Caputo JM; Collins SH
    J Biomech; 2016 Oct; 49(14):3452-3459. PubMed ID: 27702444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations?
    Hunt GR; Hood S; Gabert L; Lenzi T
    J Neuroeng Rehabil; 2023 May; 20(1):58. PubMed ID: 37131231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.
    Russell Esposito E; Wilken JM
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1186-92. PubMed ID: 25440576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a quasi-passive biarticular prosthesis to replicate gastrocnemius function in transtibial amputee gait.
    Willson AM; Richburg CA; Anderson AJ; Muir BC; Czerniecki J; Steele KM; Aubin PM
    J Biomech; 2021 Dec; 129():110749. PubMed ID: 34583198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses.
    Pickle NT; Wilken JM; Aldridge Whitehead JM; Silverman AK
    J Biomech; 2016 Oct; 49(14):3397-3406. PubMed ID: 27670646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and preliminary verification of a novel powered ankle-foot prosthesis: From the perspective of lower-limb biomechanics compared with ESAR foot.
    Liu J; Liu J; Cheah PY; Al Kouzbary M; Al Kouzbary H; Yao SX; Shasmin HN; Arifin N; Razak NAA; Abu Osman NA
    PLoS One; 2024; 19(6):e0303397. PubMed ID: 38848334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking on uneven terrain with a powered ankle prosthesis: A preliminary assessment.
    Shultz AH; Lawson BE; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5299-302. PubMed ID: 26737487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical evaluation of gastrocnemius and soleus function during walking.
    Lenhart RL; Francis CA; Lenz AL; Thelen DG
    J Biomech; 2014 Sep; 47(12):2969-74. PubMed ID: 25107666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.