These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36661401)

  • 1. Passivation of Hematite by a Semiconducting Overlayer Reduces Charge Recombination: An Insight from Nonadiabatic Molecular Dynamics.
    Wang H; Zhou Z; Long R; Prezhdo OV
    J Phys Chem Lett; 2023 Feb; 14(4):879-887. PubMed ID: 36661401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics.
    Zhou Z; Liu J; Long R; Li L; Guo L; Prezhdo OV
    J Am Chem Soc; 2017 May; 139(19):6707-6717. PubMed ID: 28445637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.
    Ulman K; Nguyen MT; Seriani N; Gebauer R
    J Chem Phys; 2016 Mar; 144(9):094701. PubMed ID: 26957170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Sb
    Annamalai A; Sandström R; Gracia-Espino E; Boulanger N; Boily JF; Mühlbacher I; Shchukarev A; Wågberg T
    ACS Appl Mater Interfaces; 2018 May; 10(19):16467-16473. PubMed ID: 29663796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting.
    Gao RT; Zhang J; Nakajima T; He J; Liu X; Zhang X; Wang L; Wu L
    Nat Commun; 2023 May; 14(1):2640. PubMed ID: 37156781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Surface Passivation and Hole Transport Layer on Hematite Photoanodes Enabling Robust Photoelectrocatalytic Water Oxidation.
    Xie H; Song Y; Jiao Y; Gao L; Shi S; Wang C; Hou J
    ACS Nano; 2024 Feb; ():. PubMed ID: 38343104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.
    Xiong D; Li W; Wang X; Liu L
    Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Ce-Fe
    Wu J; Liu J; Jin L; Hu B; Liu W
    Inorg Chem; 2022 Aug; 61(32):12591-12598. PubMed ID: 35920803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes.
    Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of charge dynamics in dinuclear cobalt phthalocyanine ammonium sulfonate (PDS) modified Ti-Fe
    Zhang K; Wu Q; Ba K; Qiu Q; Yang Y; Lin Y; Wang D; Xie T
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1022-1031. PubMed ID: 37459726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting.
    Barroso M; Mesa CA; Pendlebury SR; Cowan AJ; Hisatomi T; Sivula K; Grätzel M; Klug DR; Durrant JR
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15640-5. PubMed ID: 22802673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando X-ray Absorption Spectroscopy (XAS) Observation of Photoinduced Oxidation in FeNi (Oxy)hydroxide Overlayers on Hematite (α-Fe
    Tsyganok A; Ghigna P; Minguzzi A; Naldoni A; Murzin V; Caliebe W; Rothschild A; Ellis DS
    Langmuir; 2020 Oct; 36(39):11564-11572. PubMed ID: 32900201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.