These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36661835)

  • 21. Preparation and Characterization of Chitosan Grafting Hydrogel for Mine-Fire Fighting.
    Jiang Z; Dou G
    ACS Omega; 2020 Feb; 5(5):2303-2309. PubMed ID: 32064392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laboratorial Investigation of Coal Fire Extinguishing and Re-burning Risk in Underground Coal Mines.
    Ma D; Yuan L; Xue S; Dong X; Guo P; Tang Y
    ACS Omega; 2022 Oct; 7(39):35233-35244. PubMed ID: 36211054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection and management of coal seam outcrop fire in China: a case study.
    Liu Y; Qi X; Luo D; Zhang Y; Qin J
    Sci Rep; 2024 Feb; 14(1):4609. PubMed ID: 38409355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China.
    Shao Z; Jia X; Zhong X; Wang D; Wei J; Wang Y; Chen L
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26603-26616. PubMed ID: 29998446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of a New Type of Iron-Based Polymer Hydrogel for Mining and Its Firefighting Performance.
    Li T; Fan J; Yin B; Guan H
    ACS Omega; 2024 Feb; 9(6):7108-7122. PubMed ID: 38371796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Effective Flame-Retardant Rigid Polyurethane Foams: Fabrication and Applications in Inhibition of Coal Combustion.
    Wang L; Tawiah B; Shi Y; Cai S; Rao X; Liu C; Yang Y; Yang F; Yu B; Liang Y; Fu L
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31671837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study.
    Jia X; Wu J; Lian C; Rao J
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87257-87267. PubMed ID: 35804231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing safety in small confined spaces with thermally triggered fire-extinguishing microcapsules from microfluidics.
    Li C; Bian H; Ding D; Huang F; Zhu Z
    Lab Chip; 2024 Feb; 24(4):904-912. PubMed ID: 38263799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic contaminants formed during fire extinguishing using different firefighting methods assessed by nontarget analysis.
    Dubocq F; Bjurlid F; Ydstål D; Titaley IA; Reiner E; Wang T; Almirall XO; Kärrman A
    Environ Pollut; 2020 Oct; 265(Pt A):114834. PubMed ID: 32454383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous monitoring system of gob temperature and its application.
    Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research on the influence of driving gas types in compound jet on extinguishing the pool fire.
    Deng B; Lu L; Qian X; Kang Q; Fu L
    J Hazard Mater; 2019 Feb; 363():152-160. PubMed ID: 30308353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application.
    Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.
    Kong B; Li Z; Yang Y; Liu Z; Yan D
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Meticulous Graded and Early Warning System of Coal Spontaneous Combustion Based on Index Gases and Characteristic Temperature.
    Guo J; Quan Y; Cai G; Jin Y; Zheng X; Liu Y
    ACS Omega; 2023 Feb; 8(7):6801-6812. PubMed ID: 36844506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fire retardant performance, toxicity and combustion characteristics, and numerical evaluation of core materials for sandwich panels.
    Wi S; Yang S; Yun BY; Kang Y; Kim S
    Environ Pollut; 2022 Nov; 312():120067. PubMed ID: 36067974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams.
    Chatterjee S; Shanmuganathan K; Kumaraswamy G
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44864-44872. PubMed ID: 29206442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight to hydrophobic SiO
    He S; Ruan C; Shi Y; Chen G; Ma Y; Dai H; Chen X; Yang X
    J Hazard Mater; 2021 Mar; 405():124216. PubMed ID: 33268197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Halogenated flame retardants: do the fire safety benefits justify the risks?
    Shaw SD; Blum A; Weber R; Kannan K; Rich D; Lucas D; Koshland CP; Dobraca D; Hanson S; Birnbaum LS
    Rev Environ Health; 2010; 25(4):261-305. PubMed ID: 21268442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the fire extinguishing effect of compressed nitrogen foam on 280 Ah lithium iron phosphate battery.
    Li X; Li X; Li C; Wu J; Liu B
    Heliyon; 2024 Jun; 10(11):e31920. PubMed ID: 38882383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental Study on Thermosensitive Hydrogel Used to Extinguish Class A Fire.
    Ma L; Huang X; Sheng Y; Liu X; Wei G
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.