These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36661854)

  • 1. Graphene Interlocking Carbon Nanotubes for High-Strength and High-Conductivity Fibers.
    Li L; Sun T; Lu S; Chen Z; Xu S; Jian M; Zhang J
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5701-5708. PubMed ID: 36661854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers.
    Zhu Y; Yue H; Aslam MJ; Bai Y; Zhu Z; Wei F
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing.
    Zhong XH; Wang R; Wen YY
    Phys Chem Chem Phys; 2013 Mar; 15(11):3861-5. PubMed ID: 23399977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct spinning and densification method for high-performance carbon nanotube fibers.
    Lee J; Lee DM; Jung Y; Park J; Lee HS; Kim YK; Park CR; Jeong HS; Kim SM
    Nat Commun; 2019 Jul; 10(1):2962. PubMed ID: 31273205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneously enhanced tenacity, rupture work, and thermal conductivity of carbon nanotube fibers by raising effective tube portion.
    Zhang X; De Volder M; Zhou W; Issman L; Wei X; Kaniyoor A; Terrones Portas J; Smail F; Wang Z; Wang Y; Liu H; Zhou W; Elliott J; Xie S; Boies A
    Sci Adv; 2022 Dec; 8(50):eabq3515. PubMed ID: 36516257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of CNT Oxidation on the Processing and Properties of Superacid-Spun CNT Fibers.
    Cheng K; Cheng L; Jiang X; Wang Z; Pan J; Fang N; Zhang Z; Qu S; Lyu W
    Chem Asian J; 2024 Jul; ():e202400327. PubMed ID: 38987921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating Ultrastrong Carbon Nanotube Fibers via a Microwave Welding Interface.
    Huang J; Guo Y; Lei X; Chen B; Hao H; Luo J; Sun T; Jian M; Gao E; Wu X; Ma W; Shao Y; Zhang J
    ACS Nano; 2024 Jun; 18(22):14377-14387. PubMed ID: 38781118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanded Carbon Nanotube Fiber at the Liquid-Air Interface for High-Performance Fiber-Based Supercapacitors and Electrochemical Sensors.
    Zhou Y; Cai Y; Tu T; Zhang S; Li T; Fang L; Wang D; Liang Y; Wang Z; Jiang Y; Zhou C; Liang B
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41839-41849. PubMed ID: 37590959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastrong Hybrid Fibers with Tunable Macromolecular Interfaces of Graphene Oxide and Carbon Nanotube for Multifunctional Applications.
    Kim SG; Heo SJ; Kim JG; Kim SO; Lee D; Kim M; Kim ND; Kim DY; Hwang JY; Chae HG; Ku BC
    Adv Sci (Weinh); 2022 Oct; 9(29):e2203008. PubMed ID: 35988149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercial Wet-Spun Singlewall and Dry-Spun Multiwall Carbon Nanotube Fiber Surface O-Functionalization by Ozone Treatment.
    Sundaram RM; Yamada T; Kokubo K; Hata K; Sekiguchi A
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6151-6159. PubMed ID: 34229816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Connection of Single-Wall Carbon Nanotube Fibers with a Copper Substrate Using an Intermediate Nickel Layer.
    Gao Z; Xu L; Jiao X; Li X; He C; Wang HZ; Sun C; Hou PX; Liu C; Cheng HM
    ACS Nano; 2023 Sep; 17(18):18290-18298. PubMed ID: 37706683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Structural Coloration of Carbon Nanotube Fibers via a Facile Silica Photonic Crystal Self-Assembly Strategy.
    Zhao Y; Li R; Wang B; Huang Y; Lyu P; Wang F; Jiang Q; Han Y; Zhang S; Wu X; Zhao S; Zhu N; Zhang R
    ACS Nano; 2023 Feb; 17(3):2893-2900. PubMed ID: 36715585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millisecond tension-annealing for enhancing carbon nanotube fibers.
    Song Y; Di J; Zhang C; Zhao J; Zhang Y; Hu D; Li M; Zhang Z; Wei H; Li Q
    Nanoscale; 2019 Aug; 11(29):13909-13916. PubMed ID: 31304941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers.
    Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q
    Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.
    Ma Y; Li P; Sedloff I; Zhang X; Zhang H; Liu J
    ACS Nano; 2015 Feb; 9(2):1352-9. PubMed ID: 25625807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties.
    Tsentalovich DE; Headrick RJ; Mirri F; Hao J; Behabtu N; Young CC; Pasquali M
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36189-36198. PubMed ID: 28937741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers.
    Lee J; Lee DM; Kim YK; Jeong HS; Kim SM
    Small; 2017 Oct; 13(38):. PubMed ID: 28786553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties.
    Hossain MM; Islam MA; Shima H; Hasan M; Lee M
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastrong Carbon Nanotubes/Graphene Papers via Multiple π-π Cross-Linking.
    Wang Y; Meng F; Huang F; Li Y; Tian X; Mei Y; Zhou Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47811-47819. PubMed ID: 32985859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence.
    Lee D; Kim SG; Hong S; Madrona C; Oh Y; Park M; Komatsu N; Taylor LW; Chung B; Kim J; Hwang JY; Yu J; Lee DS; Jeong HS; You NH; Kim ND; Kim DY; Lee HS; Lee KH; Kono J; Wehmeyer G; Pasquali M; Vilatela JJ; Ryu S; Ku BC
    Sci Adv; 2022 Apr; 8(16):eabn0939. PubMed ID: 35452295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.