BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36661893)

  • 1. Modification in Applying Appendix D of 40 CFR Part 61 to Heated Solid Radionuclide Materials With High Melting and Boiling Points.
    Smith LL; McCarter WBL; Barnett JM
    Health Phys; 2023 May; 124(5):431-437. PubMed ID: 36661893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database.
    Scofield PA; Smith LL; Johnson DN
    Health Phys; 2017 Jul; 113(1):78-88. PubMed ID: 28542014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to Account for CAP-88 PC-Omitted Nuclides in Radioactive Air Emissions From DOE Facilities.
    Harshman A; Scofield P
    Health Phys; 2023 Apr; 124(4):332-341. PubMed ID: 36729377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six methods to assess potential radioactive air emissions from a stack.
    Barnett JM; Davis WE
    Health Phys; 1996 Nov; 71(5):773-8. PubMed ID: 8887527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radon concentrations in a spa in Serbia.
    Manic G; Petrovic S; Vesna M; Popovic D; Todorovic D
    Environ Int; 2006 May; 32(4):533-7. PubMed ID: 16483654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A best fit approach to estimating multiple diffuse source terms using ambient air monitoring data and an air dispersion model.
    MacQueen D; Bertoldo N; Wegrecki A
    Health Phys; 2013 Aug; 105(2 Suppl 2):S140-8. PubMed ID: 23803667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of U.S. Environmental Protection Agency's CAP88 PC Versions 3.0 and 4.0.
    Jannik T; Farfan EB; Dixon K; Newton J; Sailors C; Johnson L; Moore K; Stahman R
    Health Phys; 2015 Aug; 109(2 Suppl 2):S169-75. PubMed ID: 26102326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of radionuclide databases in CAP88 mainframe version 1.0 and Windows-based version 3.0.
    LaBone ED; Farfán EB; Lee PL; Jannik GT; Donnelly EH; Foley TQ
    Health Phys; 2009 Sep; 97(3):242-7. PubMed ID: 19667807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radon and radioactivity at a town overlying Uranium ores in northern Greece.
    Kourtidis K; Georgoulias AK; Vlahopoulou M; Tsirliganis N; Kastelis N; Ouzounis K; Kazakis N
    J Environ Radioact; 2015 Dec; 150():220-7. PubMed ID: 26372739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of radon release rate for an underground uranium mine ventilation shaft in China and radon distribution characteristics.
    Zhou Q; Liu S; Xu L; Zhang H; Xiao D; Deng J; Pan Z
    J Environ Radioact; 2019 Mar; 198():18-26. PubMed ID: 30576899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of the Fernald Dosimetry Reconstruction Project and source term estimates for 1951-1988.
    Meyer KR; Voillequé PG; Schmidt DW; Rope SK; Killough GG; Shleien B; Moore RE; Case MJ; Till JE
    Health Phys; 1996 Oct; 71(4):425-37. PubMed ID: 8830745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).
    Fijałkowska-Lichwa L
    J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of CAP88 at Department of Energy sites.
    Snyder S; Vázquez G; Hay T
    Health Phys; 2013 Aug; 105(2 Suppl 2):S164-8. PubMed ID: 23803670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The airborne natural radioactivity in the uranium mine Rožná I.
    Otahal P; Burian I
    Radiat Prot Dosimetry; 2011 May; 145(2-3):150-4. PubMed ID: 21459877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines.
    Panigrahi DC; Sahu P; Mishra DP
    J Environ Radioact; 2015 Feb; 140():95-104. PubMed ID: 25461521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 100 kBq m-3 Radon Activity Concentration in the Atmosphere of a Bathroom Supplied with Groundwater From A Gneissic Rock Area with Consanguineous Intrusions.
    Søstrand P; Sverre L; Danielsen TE
    Health Phys; 2016 Dec; 111(6):559-561. PubMed ID: 27798479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indoor radon measurements in the uranium regions of Poli and Lolodorf, Cameroon.
    Saïdou ; Abdourahimi ; Tchuente Siaka YF; Bouba O
    J Environ Radioact; 2014 Oct; 136():36-40. PubMed ID: 24878718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon progeny unattached fraction in an atmosphere far from radioactive equilibrium.
    Cavallo A; Hutter A; Shebell P
    Health Phys; 1999 May; 76(5):532-6. PubMed ID: 10201567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium Province.
    Pereira AJ; Godinho MM; Neves LJ
    J Environ Radioact; 2010 Oct; 101(10):875-82. PubMed ID: 20554356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor Radon in Micro-geological Setting of an Indigenous Community in Canada: A Pilot Study for Hazard Identification.
    Sarkar A; Wilton DH; Fitzgerald E
    Int J Occup Environ Med; 2017 Apr; 8(2):69-79. PubMed ID: 28432368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.