These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36662226)
21. Mass Spectrometry-Based Integration and Expansion of the Chemical Diversity Harbored Within a Marine Sponge. Cantrell TP; Freeman CJ; Paul VJ; Agarwal V; Garg N J Am Soc Mass Spectrom; 2019 Aug; 30(8):1373-1384. PubMed ID: 31093948 [TBL] [Abstract][Full Text] [Related]
22. Analysis of functional gene transcripts suggests active CO2 assimilation and CO oxidation by diverse bacteria in marine sponges. Feng G; Zhang F; Banakar S; Karlep L; Li Z FEMS Microbiol Ecol; 2019 Jul; 95(7):. PubMed ID: 31187114 [TBL] [Abstract][Full Text] [Related]
23. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Lackner G; Peters EE; Helfrich EJ; Piel J Proc Natl Acad Sci U S A; 2017 Jan; 114(3):E347-E356. PubMed ID: 28049838 [TBL] [Abstract][Full Text] [Related]
24. Microbial and Functional Biodiversity Patterns in Sponges that Accumulate Bromopyrrole Alkaloids Suggest Horizontal Gene Transfer of Halogenase Genes. Rua CPJ; de Oliveira LS; Froes A; Tschoeke DA; Soares AC; Leomil L; Gregoracci GB; Coutinho R; Hajdu E; Thompson CC; Berlinck RGS; Thompson FL Microb Ecol; 2018 Oct; 76(3):825-838. PubMed ID: 29546438 [TBL] [Abstract][Full Text] [Related]
25. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges. Li Z; Wang Y; Li J; Liu F; He L; He Y; Wang S Mar Biotechnol (NY); 2016 Dec; 18(6):659-671. PubMed ID: 27819120 [TBL] [Abstract][Full Text] [Related]
26. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. Amelia TSM; Suaberon FAC; Vad J; Fahmi ADM; Saludes JP; Bhubalan K Mar Biotechnol (NY); 2022 Jun; 24(3):492-512. PubMed ID: 35567600 [TBL] [Abstract][Full Text] [Related]
27. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges. Cheng C; MacIntyre L; Abdelmohsen UR; Horn H; Polymenakou PN; Edrada-Ebel R; Hentschel U PLoS One; 2015; 10(9):e0138528. PubMed ID: 26407167 [TBL] [Abstract][Full Text] [Related]
28. Effects of Seasonal Anoxia on the Microbial Community Structure in Demosponges in a Marine Lake in Lough Hyne, Ireland. Schuster A; Strehlow BW; Eckford-Soper L; McAllen R; Canfield DE mSphere; 2021 Feb; 6(1):. PubMed ID: 33536324 [TBL] [Abstract][Full Text] [Related]
29. Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Konstantinou D; Popin RV; Fewer DP; Sivonen K; Gkelis S Mar Drugs; 2021 May; 19(6):. PubMed ID: 34073758 [TBL] [Abstract][Full Text] [Related]
30. Competitive interactions between sponge-associated bacteria. Esteves AI; Cullen A; Thomas T FEMS Microbiol Ecol; 2017 Mar; 93(3):. PubMed ID: 28115399 [TBL] [Abstract][Full Text] [Related]
31. Pseudobulbiferamides: Plasmid-Encoded Ureidopeptide Natural Products with Biosynthetic Gene Clusters Shared Among Marine Bacteria of Different Genera. Zhong W; Aiosa N; Deutsch JM; Garg N; Agarwal V J Nat Prod; 2023 Oct; 86(10):2414-2420. PubMed ID: 37713418 [TBL] [Abstract][Full Text] [Related]
32. Evolutionary relevance of metabolite production in relation to marine sponge bacteria symbiont. Hamoda AM; Hamdy R; Fayed B; Abouleish M; Sulaiman A; Hamad M; Soliman SSM Appl Microbiol Biotechnol; 2023 Aug; 107(16):5225-5240. PubMed ID: 37358811 [TBL] [Abstract][Full Text] [Related]
33. Biosynthesis of Bioactive Natural Products Derived from Theonellidae Family Marine Sponges. Wakimoto T Chem Pharm Bull (Tokyo); 2023; 71(1):1-8. PubMed ID: 36596505 [TBL] [Abstract][Full Text] [Related]
34. Marine Sponges in a Snowstorm - Extreme Sensitivity of a Sponge Holobiont to Marine Oil Snow and Chemically Dispersed Oil Pollution. Vad J; Duran Suja L; Summers S; Henry TB; Roberts JM Front Microbiol; 2022; 13():909853. PubMed ID: 35910618 [TBL] [Abstract][Full Text] [Related]
35. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. Fan L; Liu M; Simister R; Webster NS; Thomas T ISME J; 2013 May; 7(5):991-1002. PubMed ID: 23283017 [TBL] [Abstract][Full Text] [Related]
36. Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review. Zhang B; Zhang T; Xu J; Lu J; Qiu P; Wang T; Ding L Mini Rev Med Chem; 2020; 20(19):1966-2010. PubMed ID: 32851959 [TBL] [Abstract][Full Text] [Related]
37. Biotechnological potential of sponge-associated bacteria. Santos-Gandelman JF; Giambiagi-deMarval M; Oelemann WM; Laport MS Curr Pharm Biotechnol; 2014; 15(2):143-55. PubMed ID: 25022270 [TBL] [Abstract][Full Text] [Related]
38. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. Imhoff JF; Stöhr R Prog Mol Subcell Biol; 2003; 37():35-57. PubMed ID: 15825639 [TBL] [Abstract][Full Text] [Related]
39. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing. He L; Liu F; Karuppiah V; Ren Y; Li Z Microb Ecol; 2014 May; 67(4):951-61. PubMed ID: 24577740 [TBL] [Abstract][Full Text] [Related]
40. Chemical control of bacterial epibiosis and larval settlement of Hydroides elegans in the red sponge Mycale adherens. Lee OO; Qian PY Biofouling; 2003 Apr; 19 Suppl():171-80. PubMed ID: 14618717 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]