These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36662429)
21. What the reclaimed water use can change: From a perspective of inter-provincial virtual water network. Qi H; Zeng S; Shi L; Dong X J Environ Manage; 2021 Jun; 287():112350. PubMed ID: 33740749 [TBL] [Abstract][Full Text] [Related]
22. Exploring the use of microbial enhanced oil recovery in Kazakhstan: a review. Yernazarova A; Shaimerdenova U; Akimbekov N; Kaiyrmanova G; Shaken M; Izmailova A Front Microbiol; 2024; 15():1394838. PubMed ID: 39176284 [TBL] [Abstract][Full Text] [Related]
23. [Current malaria situation in the Republic of Kazakhstan]. Bismil'din FB; Shapieva ZhZh; Anpilova EN Med Parazitol (Mosk); 2001; (1):24-33. PubMed ID: 11548308 [TBL] [Abstract][Full Text] [Related]
24. Green Supply Chain Optimization Based on BP Neural Network. Wang H Front Neurorobot; 2022; 16():865693. PubMed ID: 35711280 [TBL] [Abstract][Full Text] [Related]
25. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade. Zhuo L; Mekonnen MM; Hoekstra AY Environ Int; 2016 Sep; 94():211-223. PubMed ID: 27262784 [TBL] [Abstract][Full Text] [Related]
26. Analysis of Food Production and Consumption Based on the Emergy Method in Kazakhstan. Jia M; Zhen L Foods; 2021 Jul; 10(7):. PubMed ID: 34359393 [TBL] [Abstract][Full Text] [Related]
27. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391 [TBL] [Abstract][Full Text] [Related]
28. Uneven development within China: Implications for interprovincial energy, water and arable land requirements. Zhang B; Wang Q; Liu Y; Zhang Y; Wu X; Sun X; Qiao H J Environ Manage; 2020 May; 261():110231. PubMed ID: 32148301 [TBL] [Abstract][Full Text] [Related]
29. The "Gravity" for global virtual water flows: From quantity and quality perspectives. Hou S; Xu M; Qu S J Environ Manage; 2023 Mar; 329():116984. PubMed ID: 36563441 [TBL] [Abstract][Full Text] [Related]
30. What Induces the Energy-Water Nexus in China's Supply Chains? Shi J; Li H; An H; Guan J; Ma N Environ Sci Technol; 2020 Jan; 54(1):372-379. PubMed ID: 31795632 [TBL] [Abstract][Full Text] [Related]
31. Analysis of the influencing factors of energy-related carbon emissions in Kazakhstan at different stages. Xiong C; Chen S; Gao Q; Xu L Environ Sci Pollut Res Int; 2020 Oct; 27(29):36630-36638. PubMed ID: 32564320 [TBL] [Abstract][Full Text] [Related]
32. An improved Back Propagation Neural Network framework and its application in the automatic calibration of Storm Water Management Model for an urban river watershed. Feng J; Duan T; Bao J; Li Y Sci Total Environ; 2024 Mar; 915():169886. PubMed ID: 38185155 [TBL] [Abstract][Full Text] [Related]
33. Quality matters: Pollution exacerbates water scarcity and sectoral output risks in China. Li J; Yang J; Liu M; Ma Z; Fang W; Bi J Water Res; 2022 Oct; 224():119059. PubMed ID: 36126628 [TBL] [Abstract][Full Text] [Related]
34. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows. Dong H; Geng Y; Fujita T; Fujii M; Hao D; Yu X Sci Total Environ; 2014 Dec; 500-501():120-30. PubMed ID: 25222751 [TBL] [Abstract][Full Text] [Related]
35. Pathways to progress sustainability: an accurate ecological footprint analysis and prediction for Shandong in China based on integration of STIRPAT model, PLS, and BPNN. Li Y; Wang Z; Wei Y Environ Sci Pollut Res Int; 2021 Oct; 28(39):54695-54718. PubMed ID: 34018110 [TBL] [Abstract][Full Text] [Related]
36. Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network. Wang W; Zhao S; Jiao L; Taylor M; Zhang B; Xu G; Hou H Sci Rep; 2019 Sep; 9(1):13788. PubMed ID: 31551510 [TBL] [Abstract][Full Text] [Related]
37. Trade-related water scarcity risk under the Belt and Road Initiative. Wang L; Li Y; Liang S; Xu M; Qu S Sci Total Environ; 2021 Dec; 801():149781. PubMed ID: 34467898 [TBL] [Abstract][Full Text] [Related]
38. Save Kazakhstan's shrinking Lake Balkhash. Ussenaliyeva A Science; 2020 Oct; 370(6514):303. PubMed ID: 33060354 [No Abstract] [Full Text] [Related]
39. Assessment of the effects of human activity and natural condition on the outflow of Syr Darya River: A stepwise-cluster factorial analysis method. Zhai XB; Li YP; Liu YR; Huang GH Environ Res; 2021 Mar; 194():110634. PubMed ID: 33359456 [TBL] [Abstract][Full Text] [Related]
40. [A virtual water analysis for agricultural production and food security]. Ke B; Liu WH; Duan GM; Yan Y; Deng HB; Zhao JZ Huan Jing Ke Xue; 2004 Mar; 25(2):32-6. PubMed ID: 15202230 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]