These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36662543)

  • 21. Interactions between grafted cationic dendrimers and anionic bilayer membranes.
    Lewis T; Ganesan V
    J Phys Chem B; 2013 Aug; 117(33):9806-20. PubMed ID: 23863079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles.
    Xu E; Saltzman WM; Piotrowski-Daspit AS
    J Control Release; 2021 Jul; 335():465-480. PubMed ID: 34077782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyamidoamine dendrimer-conjugated quantum dots for efficient labeling of primary cultured mesenchymal stem cells.
    Higuchi Y; Wu C; Chang KL; Irie K; Kawakami S; Yamashita F; Hashida M
    Biomaterials; 2011 Oct; 32(28):6676-82. PubMed ID: 21700331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA dendrimer-templated copper nanoparticles: self-assembly, aggregation-induced emission enhancement and sensing of lead ions.
    Li M; Cai YN; Peng CF; Wei XL; Wang ZP
    Mikrochim Acta; 2021 Sep; 188(10):346. PubMed ID: 34537909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives.
    Wen Y; Guo Z; Du Z; Fang R; Wu H; Zeng X; Wang C; Feng M; Pan S
    Biomaterials; 2012 Nov; 33(32):8111-21. PubMed ID: 22898182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiol-Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles.
    Kanjilal P; Dutta K; Thayumanavan S
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202209227. PubMed ID: 35866880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Cell Membrane-Vector Interactions in Successful Gene Delivery.
    Vaidyanathan S; Orr BG; Banaszak Holl MM
    Acc Chem Res; 2016 Aug; 49(8):1486-93. PubMed ID: 27459207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring the dendrimer core for efficient gene delivery.
    Hu J; Hu K; Cheng Y
    Acta Biomater; 2016 Apr; 35():1-11. PubMed ID: 26923528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules.
    Sakamoto K; Akishiba M; Iwata T; Murata K; Mizuno S; Kawano K; Imanishi M; Sugiyama F; Futaki S
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):19990-19998. PubMed ID: 32557993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA.
    Li C; Zhou J; Wu Y; Dong Y; Du L; Yang T; Wang Y; Guo S; Zhang M; Hussain A; Xiao H; Weng Y; Huang Y; Wang X; Liang Z; Cao H; Zhao Y; Liang XJ; Dong A; Huang Y
    Nano Lett; 2021 Apr; 21(8):3680-3689. PubMed ID: 33596656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency of Cytosolic Delivery with Poly(β-amino ester) Nanoparticles is Dependent on the Effective p
    Routkevitch D; Sudhakar D; Conge M; Varanasi M; Tzeng SY; Wilson DR; Green JJ
    ACS Biomater Sci Eng; 2020 Jun; 6(6):3411-3421. PubMed ID: 33463158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient intracellular and in vivo delivery of toxin proteins by a ROS-responsive polymer for cancer therapy.
    Lv J; Yang Z; Wang C; Duan J; Ren L; Rong G; Feng Q; Li Y; Cheng Y
    J Control Release; 2023 Mar; 355():160-170. PubMed ID: 36736906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two birds with one stone: dendrimer surface engineering enables tunable periphery hydrophobicity and rapid endosomal escape.
    Wang Z; Chen C; Liu R; Fan A; Kong D; Zhao Y
    Chem Commun (Camb); 2014 Nov; 50(90):14025-8. PubMed ID: 25268873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endosome-disruptive peptides for improving cytosolic delivery of bioactive macromolecules.
    Nakase I; Kobayashi S; Futaki S
    Biopolymers; 2010; 94(6):763-70. PubMed ID: 20564044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytosolic Protein Delivery for Intracellular Antigen Targeting Using Supercharged Polypeptide Delivery Platform.
    Wang Q; Yang Y; Liu D; Ji Y; Gao X; Yin J; Yao W
    Nano Lett; 2021 Jul; 21(14):6022-6030. PubMed ID: 34227381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement.
    Gupta U; Agashe HB; Asthana A; Jain NK
    Biomacromolecules; 2006 Mar; 7(3):649-58. PubMed ID: 16529394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides.
    Dailing EA; Kilchrist KV; Tierney JW; Fletcher RB; Evans BC; Duvall CL
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50222-50235. PubMed ID: 33124813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture.
    Kretzmann JA; Luther DC; Evans CW; Jeon T; Jerome W; Gopalakrishnan S; Lee YW; Norret M; Iyer KS; Rotello VM
    J Am Chem Soc; 2021 Mar; 143(12):4758-4765. PubMed ID: 33705125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A light-activated polymer with excellent serum tolerance for intracellular protein delivery.
    Ren L; Jiang L; Ren Q; Lv J; Zhu L; Cheng Y
    Chem Sci; 2023 Feb; 14(8):2046-2053. PubMed ID: 36845943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.
    Shahbazi MA; Almeida PV; Mäkilä EM; Kaasalainen MH; Salonen JJ; Hirvonen JT; Santos HA
    Biomaterials; 2014 Aug; 35(26):7488-500. PubMed ID: 24906344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.