BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36662621)

  • 1. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer.
    Li HT; Jang HJ; Rohena-Rivera K; Liu M; Gujar H; Kulchycki J; Zhao S; Billet S; Zhou X; Weisenberger DJ; Gill I; Jones PA; Bhowmick NA; Liang G
    Cell Rep; 2023 Jan; 42(1):112016. PubMed ID: 36662621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SETD2 Deficiency Confers Sensitivity to Dual Inhibition of DNA Methylation and PARP in Kidney Cancer.
    Zhou X; Sekino Y; Li HT; Fu G; Yang Z; Zhao S; Gujar H; Zu X; Weisenberger DJ; Gill IS; Tulpule V; D'souza A; Quinn DI; Han B; Liang G
    Cancer Res; 2023 Nov; 83(22):3813-3826. PubMed ID: 37695044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma.
    Ho TH; Park IY; Zhao H; Tong P; Champion MD; Yan H; Monzon FA; Hoang A; Tamboli P; Parker AS; Joseph RW; Qiao W; Dykema K; Tannir NM; Castle EP; Nunez-Nateras R; Teh BT; Wang J; Walker CL; Hung MC; Jonasch E
    Oncogene; 2016 Mar; 35(12):1565-74. PubMed ID: 26073078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma.
    Tiedemann RL; Hlady RA; Hanavan PD; Lake DF; Tibes R; Lee JH; Choi JH; Ho TH; Robertson KD
    Oncotarget; 2016 Jan; 7(2):1927-46. PubMed ID: 26646321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair.
    Kanu N; Grönroos E; Martinez P; Burrell RA; Yi Goh X; Bartkova J; Maya-Mendoza A; Mistrík M; Rowan AJ; Patel H; Rabinowitz A; East P; Wilson G; Santos CR; McGranahan N; Gulati S; Gerlinger M; Birkbak NJ; Joshi T; Alexandrov LB; Stratton MR; Powles T; Matthews N; Bates PA; Stewart A; Szallasi Z; Larkin J; Bartek J; Swanton C
    Oncogene; 2015 Nov; 34(46):5699-708. PubMed ID: 25728682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development.
    Li L; Miao W; Huang M; Williams P; Wang Y
    Mol Cell Proteomics; 2019 Mar; 18(3):437-447. PubMed ID: 30487242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SETD2 loss in renal epithelial cells drives epithelial-to-mesenchymal transition in a TGF-β-independent manner.
    Wang T; Wagner RT; Hlady RA; Pan X; Zhao X; Kim S; Wang L; Lee JH; Luo H; Castle EP; Lake DF; Ho TH; Robertson KD
    Mol Oncol; 2024 Jan; 18(1):44-61. PubMed ID: 37418588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12.
    González-Rodríguez P; Engskog-Vlachos P; Zhang H; Murgoci AN; Zerdes I; Joseph B
    Cell Death Dis; 2020 Jan; 11(1):69. PubMed ID: 31988284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes.
    Xie Y; Sahin M; Sinha S; Wang Y; Nargund AM; Lyu Y; Han S; Dong Y; Hsieh JJ; Leslie CS; Cheng EH
    Nat Cancer; 2022 Feb; 3(2):188-202. PubMed ID: 35115713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects.
    Simon JM; Hacker KE; Singh D; Brannon AR; Parker JS; Weiser M; Ho TH; Kuan PF; Jonasch E; Furey TS; Prins JF; Lieb JD; Rathmell WK; Davis IJ
    Genome Res; 2014 Feb; 24(2):241-50. PubMed ID: 24158655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased Expression of SETD2 Predicts Unfavorable Prognosis in Patients With Nonmetastatic Clear-Cell Renal Cell Carcinoma.
    Liu W; Fu Q; An H; Chang Y; Zhang W; Zhu Y; Xu L; Xu J
    Medicine (Baltimore); 2015 Nov; 94(45):e2004. PubMed ID: 26559293
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Chiang YC; Park IY; Terzo EA; Tripathi DN; Mason FM; Fahey CC; Karki M; Shuster CB; Sohn BH; Chowdhury P; Powell RT; Ohi R; Tsai YS; de Cubas AA; Khan A; Davis IJ; Strahl BD; Parker JS; Dere R; Walker CL; Rathmell WK
    Cancer Res; 2018 Jun; 78(12):3135-3146. PubMed ID: 29724720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle.
    Gautam D; Johnson BA; Mac M; Moody CA
    PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of SETD2, but not H3K36me3, correlates with aggressive clinicopathological features of clear cell renal cell carcinoma patients.
    Liu L; Guo R; Zhang X; Liang Y; Kong F; Wang J; Xu Z
    Biosci Trends; 2017 May; 11(2):214-220. PubMed ID: 28260718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Studies on Primary Tubular Epithelial Cells Indicate a Tumor Suppressor Role of SETD2 in Clear Cell Renal Cell Carcinoma.
    Li J; Kluiver J; Osinga J; Westers H; van Werkhoven MB; Seelen MA; Sijmons RH; van den Berg A; Kok K
    Neoplasia; 2016 Jun; 18(6):339-46. PubMed ID: 27292023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint.
    Carvalho S; Vítor AC; Sridhara SC; Martins FB; Raposo AC; Desterro JM; Ferreira J; de Almeida SF
    Elife; 2014 May; 3():e02482. PubMed ID: 24843002
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Su X; Zhang J; Mouawad R; Compérat E; Rouprêt M; Allanic F; Parra J; Bitker MO; Thompson EJ; Gowrishankar B; Houldsworth J; Weinstein JN; Tost J; Broom BM; Khayat D; Spano JP; Tannir NM; Malouf GG
    Cancer Res; 2017 Sep; 77(18):4835-4845. PubMed ID: 28754676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death.
    Ho TH; Kapur P; Joseph RW; Serie DJ; Eckel-Passow JE; Tong P; Wang J; Castle EP; Stanton ML; Cheville JC; Jonasch E; Brugarolas J; Parker AS
    Mod Pathol; 2016 Jan; 29(1):34-42. PubMed ID: 26516698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilevel Regulation of β-Catenin Activity by SETD2 Suppresses the Transition from Polycystic Kidney Disease to Clear Cell Renal Cell Carcinoma.
    Rao H; Li X; Liu M; Liu J; Feng W; Tang H; Xu J; Gao WQ; Li L
    Cancer Res; 2021 Jul; 81(13):3554-3567. PubMed ID: 33910928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma.
    Xiang W; He J; Huang C; Chen L; Tao D; Wu X; Wang M; Luo G; Xiao X; Zeng F; Jiang G
    Oncotarget; 2015 Feb; 6(6):4066-79. PubMed ID: 25714014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.