These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36662866)

  • 1. Adsorptive exchange of coccolith biominerals facilitates viral infection.
    Johns CT; Bondoc-Naumovitz KG; Matthews A; Matson PG; Iglesias-Rodriguez MD; Taylor AR; Fuchs HL; Bidle KD
    Sci Adv; 2023 Jan; 9(3):eadc8728. PubMed ID: 36662866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coccolithophore calcification: Changing paradigms in changing oceans.
    Brownlee C; Langer G; Wheeler GL
    Acta Biomater; 2021 Jan; 120():4-11. PubMed ID: 32763469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coccolith crystals: Pure calcite or organic-mineral composite structures?
    Walker JM; Langer G
    Acta Biomater; 2021 Apr; 125():83-89. PubMed ID: 33631395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular morphological trait dataset for extant coccolithophores from the Atlantic Ocean.
    Sheward RM; Poulton AJ; Young JR; de Vries J; Monteiro FM; Herrle JO
    Sci Data; 2024 Jul; 11(1):720. PubMed ID: 38956105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo-cell volume.
    Müller MN; Brandini FP; Trull TW; Hallegraeff GM
    Geobiology; 2021 Jan; 19(1):63-74. PubMed ID: 32931664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of cytoskeleton inhibitors on coccolith morphology in Coccolithus braarudii and Scyphosphaera apsteinii.
    Langer G; Probert I; Cox MB; Taylor A; Harper GM; Brownlee C; Wheeler G
    J Phycol; 2023 Feb; 59(1):87-96. PubMed ID: 36380706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Acidic Polysaccharide Ph-PS-2 and Protein in Initiation of Coccolith Mineralization, as Demonstrated by In Vitro Calcification on the Base Plate.
    Sakurada S; Fujiwara S; Suzuki M; Kogure T; Uchida T; Umemura T; Tsuzuki M
    Mar Biotechnol (NY); 2018 Jun; 20(3):304-312. PubMed ID: 29619589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected silicon localization in calcium carbonate exoskeleton of cultured and fossil coccolithophores.
    Bordiga M; Lupi C; Langer G; Gianoncelli A; Birarda G; Pollastri S; Bonanni V; Bedolla DE; Vaccari L; Gariani G; Cerino F; Cabrini M; Beran A; Zuccotti M; Fiorentino G; Zanoni M; Garagna S; Cobianchi M; Di Giulio A
    Sci Rep; 2023 May; 13(1):7417. PubMed ID: 37150777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution spatial analyses of trace elements in coccoliths reveal new insights into element incorporation in coccolithophore calcite.
    Bottini C; Dapiaggi M; Erba E; Faucher G; Rotiroti N
    Sci Rep; 2020 Jun; 10(1):9825. PubMed ID: 32555319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica.
    Triccas A; Laidlaw F; Singleton MR; Nudelman F
    J Struct Biol; 2024 Mar; 216(1):108066. PubMed ID: 38350555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coccolithophore Cell Biology: Chalking Up Progress.
    Taylor AR; Brownlee C; Wheeler G
    Ann Rev Mar Sci; 2017 Jan; 9():283-310. PubMed ID: 27814031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice distortions in coccolith calcite crystals originate from occlusion of biomacromolecules.
    Hood MA; Leemreize H; Scheffel A; Faivre D
    J Struct Biol; 2016 Nov; 196(2):147-154. PubMed ID: 27645701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.
    Yin X; Ziegler A; Kelm K; Hoffmann R; Watermeyer P; Alexa P; Villinger C; Rupp U; Schlüter L; Reusch TBH; Griesshaber E; Walther P; Schmahl WW
    J Phycol; 2018 Feb; 54(1):85-104. PubMed ID: 29092105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The uronic acid content of coccolith-associated polysaccharides provides insight into coccolithogenesis and past climate.
    Lee RB; Mavridou DA; Papadakos G; McClelland HL; Rickaby RE
    Nat Commun; 2016 Oct; 7():13144. PubMed ID: 27782214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of silicon in the development of complex crystal shapes in coccolithophores.
    Langer G; Taylor AR; Walker CE; Meyer EM; Ben Joseph O; Gal A; Harper GM; Probert I; Brownlee C; Wheeler GL
    New Phytol; 2021 Sep; 231(5):1845-1857. PubMed ID: 33483994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-scale spatial assessment of calcium distribution in coccolithophores using synchrotron-based nano-CT and STXM-NEXAFS.
    Sun S; Yao Y; Zou X; Fan S; Zhou Q; Dai Q; Dong F; Liu M; Nie X; Tan D; Li S
    Int J Mol Sci; 2014 Dec; 15(12):23604-15. PubMed ID: 25530614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coccolithophore biomineralization: New questions, new answers.
    Brownlee C; Wheeler GL; Taylor AR
    Semin Cell Dev Biol; 2015 Oct; 46():11-6. PubMed ID: 26498037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological development of Pleurochrysis carterae coccoliths examined by cryo-electron tomography.
    Walker JM; Marzec B; Ozaki N; Clare D; Nudelman F
    J Struct Biol; 2020 Apr; 210(1):107476. PubMed ID: 32018012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emiliania huxleyi coccolith calcite mass modulation by morphological changes and ecology in the Mediterranean Sea.
    D'Amario B; Ziveri P; Grelaud M; Oviedo A
    PLoS One; 2018; 13(7):e0201161. PubMed ID: 30040853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An uneven distribution of strontium in the coccolithophore
    Walker JM; Greene HJM; Moazzam Y; Quinn PD; Parker JE; Langer G
    Environ Sci Process Impacts; 2024 Jun; 26(6):966-974. PubMed ID: 38354057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.